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Based on the cross-spectral density matrix, closed form result for propagation equation of electromagnetic
J0-correlated Schell-model beams (EJSMBs) through a paraxial optical system is obtained and the focusing
properties are studied. Both numerical calculation and physical interpretation are obtained. It is found that a
tunable dark hollow area, which has potential applications in optical trapping, can be obtained by altering
the coherence parameter and the focal length. It is also shown that even though the original field is
unpolarized, the beams can become fully polarized in the focal region with its width being tunable by
changing the coherence parameter. The relevance of this work to applications such as coherent detection in
optical communication is also discussed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

In the past decades, the partially coherent beams have been
investigated extensively because of their wide applications in modern
optics [1–4]. However, much work has been done on the character-
istics and propagation of the partially coherent beams [1–6]. A typical
example, i.e., the Gaussian Schell-model beams (GSMBs) has attracted
much attention [6,7]. There is another type of partially coherent beam
originated by a J0-correlated Schell-model planar source, which is
referred as electromagnetic J0-correlated Schell-model beams
(EJSMBs) [1]. They find that the intensity profile of the beams is
analogous to the Bessel–Gaussian beams, but the degree of coherence
is not shift-invariance. Later Borghi proposed a simple model of the
incoherent superpositions of the suitably shifted and titled Gaussian
beams to describe J0-correlated Schell-model beams (JSMBs) and
derived the M2 factor of the JSMBs [8].

Earlier analysis of the J0-correlated Schell-model beams is carried
out within a scalar representation [8–11]. It is worthwhile to
investigate the EJSMBs that are both partially polarized and partially
coherent. In this paper, we extend the scalar model of J0-correlated
Schell-model beams to the vector form by using the cross-spectral
density matrix. With the analytical expressions, the focusing
properties of the EJSMBs, i.e., the intensity distribution and the
polarizations are analyzed. We obtain a tunable dark hollow area and
a fully polarized region around the focus.

2. Propagation of beam cross-spectral densitymatrix of the EJSMBs

The EJSMBs are generated by a planar, secondary, statistically
stationary stochastic source, located in the plane z=0, close to the z
direction and radiating into the half-space z≥0. The second-order
correlation properties of the beam in the space-frequency domain
may be characterized by the (electric field) cross-spectral density
matrix [4,11–13]:

W r1;r2;ωð Þ = Wxx r1;r2;ωð Þ Wxy r1;r2;ωð Þ
Wyx r1;r2;ωð Þ Wyy r1;r2;ωð Þ

� �
; ð1Þ

where ω is the frequency and r1 and r2 are the radius vectors
corresponding to two typical points in the z=0 plane. Each element
of the cross-spectral density matrix can be expressed as [4,12–14]:

Wij r1;r2;ωð Þ = bE⁎i r1;ωð ÞEj r2;ωð Þ N i;j = x;yð Þ; ð2Þ

where the asterisk denotes the complex conjugate and the angular
brackets represent the average over the statistical ensemble of the
beams. For the case of the EJSMBs, the spectral degree of coherence is
the Bessel function of the first kind, zero order. In this paper, we
consider a source whose spectral density of the electric fields Si and Sj
are of Gaussian shape. Then the elements of the cross-spectral density
matrix have the form [5]:

Wij r1;r2;ωð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Si r1;ωð Þ

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Sj r2;ωð Þ

q
μij r2−r1;ωð Þ; i;j = x;yð Þ ð3Þ

Si r;ωð Þ = A2
i exp − r

2

2σ2
0

" #
; ð4Þ
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μij r2−r1;ωð Þ = Bij J0 βij jr2−r1 j
� �

: ð5Þ

Where Ai and Bij are amplitude factors, σ0 is the spot-size of the
Gaussian distribution and βij is real constant. These parameters are
independent on positions, but in general, depend on frequency.
According to the paraxial propagation formula of the partially coherent
theory, the propagation of the EJSMBs through an optical system

parameterized by transfer matrix A B
C D

� �
is characterized by [4,14]:

Wij r′1;r′2;z;ωð Þ= k
2πB

� �2
∫∫Wij r1;r2;0;ωð Þ × expf−ik

2B ½A r
2
1−r

2
2

� �

−2 r1⋅r′1−r2⋅r′2ð Þ+ D r′
2
1−r′

2
2

� ��gdr1dr2; ð6Þ

where r′1 and r′2 represent two points in the object plane, and k
is the wave number related to the wavelength λ by k=2π /λ.
In focusing condition, the transfer matrix can be described as
A B
C D

� �
= 1−z = f z

−1= f 1

� �
, where f is the focal length. After tedious

integral calculation, we obtain:

Wij ρ1;ρ2;zð Þ = AiAjBijπ
2N2

f

M
× exp −

π2N2
f ρ21 + ρ22
� �
M

2
4

3
5

× exp i
πNf 1 + Δz = f + π2N2

f Δz= f
� �

M
ρ22−ρ21
� �2

4
3
5

× exp −
2σ2

ij 1 + Δz= fð Þ2
M

" #
× J0f2πNfσijffiffiffiffiffi

M
p

× ρ21 exp 2iθ zð Þð Þ + ρ22 exp −2iθ zð Þð Þ−2ρ1ρ2 cos φ1−φ2ð Þ
h i1

2g;
ð7Þ

and

M = π2N2
f Δz= fð Þ2 + 1 + Δz= fð Þ2

where

Nf = 4σ2
0 = λf ; ð8Þ

ρ = r′ = 2σ0; ð9Þ

σij = βijσ0; ð10Þ

Δz = z−f ; ð11Þ

θ zð Þ = arctan
−z

πNfΔz

 !
; ð12Þ

(ρi, φi) (i=1, 2, unless otherwise stated) denotes polar coordinates in
the plane, ρ represents normalized radius, unless otherwise stated
and σij is called the coherence parameter, demonstrating the source's
coherent character. A beam source with high coherence usually has a
small σij. The diagonal elements of the cross-spectral density matrix
determine the behavior of the optical intensity distribution I(ρ, z).
And all the elements in the matrix will contribute to the degree of
polarization P(ρ, z) at any point, as is evidence from the corresponding
formula [13,15]:

I ρ;zð Þ = Tr Wð Þ = Wxx + Wyy; ð13Þ

P ρ;zð Þ =
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1−4Det Wð Þ

Tr Wð Þ½ �2
s

; ð14Þ

where Det(W) and Tr(W) denote the trace and determinant of the
cross-spectral densitymatrix. The change of intensity and polarization
properties on the focusing propagation will be discussed in detail in
the following.

3. The effect of propagation parameters on the focusing properties
of the partially polarized, partially coherent EJSMBs

3.1. Intensity distribution

Substituting from Eq. (7) into Eq. (13), we can determine the
intensity distribution of the field at any point in the space z≥0.

I ρ;zð Þ = A2
xπ

2N2
f

M
× exp −

2π2N2
f ρ

2

M

" #
exp −2σ2

xx 1 + Δz= fð Þ2
M

" #

× I0
4πNfσxx 1 + Δz = fð Þρ

M

� �
+

A2
yπ

2N2
f

M

× exp −
2π2N2

f ρ
2

M

" #
exp −

2σ2
yy 1 + Δz= fð Þ2

M

" #

× I0
4πNfσyy 1 + Δz = fð Þρ

M

� �
; ð15Þ

and

M = π2N2
f Δz= fð Þ2 + 1 + Δz= fð Þ2:

Letting ρ=0 in Eq. (15), we can obtain the axial intensity of the
focused EJSMBs. So Fig. 1 shows axial intensity distribution of focused
EJSMBs with σ=σxx=σyy=0.1, 1 and 2, where Nf=3, and f=1m.
Obviously, Fig. 1 indicates that the point of maximum intensity along
the axis is not usually at the geometrical focal plane z= f, but is
somewhat in front of the focal plane, which is referred as focal shift. As
indicated in Fig. 1, the relative focal shift depends on the coherence
parameter. It increases with σ [11]. Furthermore, letting z= f, we can
obtain the transverse distribution of intensity at the focal plane. Fig. 2
shows the variance of the intensity distribution with the changing of
the transverse position for different σ.

Fig. 1. Normalized axial intensity distribution of focused EJSMBs for different values
of σxx and σyy. σxx=σyy=0.1 (solid curve), σxx=σyy=1 (tiny dash curve), and
σxx=σyy=2 (large dash curve)(f=1m).
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