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The degree of asphericity is estimated by determining the average radius of curvature in different sections, at
various points on the surface of a sphere, and the deviation from it. We employ the vectorial shearing
interferometer (VSI) as the instrument to determine the radius of curvature from two subapertures of the
transparent glass sphere. We incorporate the sphere as a thick lens into the interferometric setup,
illuminating it with an expanded beam. The spherical aberration, introduced by the sphere in the wave front,
depends on the local sphere radius, on the refraction index of the glass, and on the cone angle of the source.
The wave front aberrated by the sphere impinges on the VSI. Here, the wave front is divided in two in
amplitude, it is sheared vectorially, and it is superimposed with itself. The fringe pattern is formed in the
intersection of the wave fronts. The shape of the resulting fringe pattern is directly related to spherical
aberration. We estimate qualitatively the degree of asphericity, comparing the phase gradients in different
sections of the sphere. Here, we report on the experimental setup to test the asphericity, the results with
different vectorial shearing (magnitude and direction). Finally, we perform a comparison with the theoretical
predictions.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Aspherical surfaces are of great interest in optics due to the ability
of some such surfaces to form a perfect point image of a point object,
excluding the diffraction effects. Additionally, in the last 40 years, the
development of increasingly more sophisticated software resulted in
diffraction limited designs incorporating small number of aspherical
optical elements.

1.1. Glass sphere

We are investigating the degree of asphericity of a glass sphere. It
is used as a primary density standard by metrology laboratories [1].
Density measurement is useful both for the industrial production and
in the scientific work. In the petroleum industry, for example, the
measurement of the density of the produced oils is crucial for the
assessment of the quality control. In scientific applications, glass
spheres are used to determine a precise value of the Avogadro
constant [2].

The density (D) may be calculated by applying its definition,
D=m/V, where m and V are the mass and the volume of the sphere,
respectively. The value of the mass is obtained by comparisons with
the mass standard and the volume is determined in terms of

dimensional measurements [3]. The primary density standard is
kept under controlled conditions of temperature and humidity, until it
is used for creating secondary standards. It is then compared to the
primary reference in weight and volume.

1.2. Optical characteristics of a glass sphere

The spherical form of the primary density standard is selected
because it is much less susceptible to damage than a cube or a
cylinder, with their sharp and clearly defined edges. Furthermore, the
volume of a sphere with an excellent sphericity may be determined
with a high degree of certainty using the mean of diameters over
many directions and at many points. We studied the degree of
asphericity of a sphere fabricated of BK7 glass with high homogeneity
and high mechanical and thermal resistance.

The glass sphere is believed to have been finished optically with a
high precision; however no specific values are provided due to the
absence of established procedures and adequate tools to measure
sphericity of a sphere. This experimental determination is in general
considered challenging because its relatively small radius of curva-
ture, over a large sphere segment produces a high fringe density
relative to those of traditional optical surfaces. Thus, a detector with a
very high resolution is necessary to resolve individual fringes. Finally,
an instrument is needed that may be adjusted for variable surface
quality, such as a vectorial shearing interferometer that allows precise
control over measurement sensitivity.
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A small number of optical techniques to measure the radius of
curvature of a surface exist, such as a cross-section contour or
profilometer [4,5]. Traditional interferometric methods are also used
to certify the sphericity of the glass spheres. Currently, the spheres are
tested in specialized standard laboratories, the Physikalisch-Technische
Bundesanstalt (PTB) in Germany or the National Institute of Standards
and Technology (NIST) in USA [6,7].

PTB employs a spherical interferometer to determine the diameter
of the sphere. This interferometer consists of a spherical etalon
formed by the spherical reference faces of two Fizeau lenses; the
phase stepping is performed by wavelength tuning [8]. The NIST
developed an interferometric instrument called XCALIBIR, also based
on a spherical Fizeau interferometer. A variant of the radius bench
method is used to measure the radius of curvature [9]. These methods
require acquisition and fabrication of high quality reference surfaces
[10,11]. These, in turn, have to be tested to demonstrate their quality.

We propose the vectorial shearing interferometer (VSI) as an
alternative instrument to determine the degree of asphericity of a
glass sphere. The advantage of using this instrument is that it requires
no high quality reference surfaces, has adjustable sensitivity, and it is
economical. Other configurations of shearing interferometers have
also been studied with varying degree of success [12,13].

We use the VSI to analyze the aberrations introduced by the sphere
in an expanded laser beam. Local sphere radius is calculated from the
value of spherical aberration coefficient. Thus, we use the VSI to
determine how the radius of curvature changes from reference sub-
aperture at a number of locations on the sphere surface.

In the next section, we describe the vectorial shearing interfer-
ometer that we developed in our laboratory and optimized for this
application. In Section 3, we use the glass sphere as an optical
component. Furthermore, we analyze the aberrations introduced by
the sphere on the wave front of a laser. We describe sub-aperture
testing of the sphere cross-section. In Section 4, we compare the fringe
patterns generated by different sections of the sphere in order to
qualitatively determine the degree of sphericity. Section 5 is dedicated
to conclusions and future work. In the next section, we briefly review
the features of VSI and elaborate on specific changes needed to
characterize the shape of the glass sphere.

2. Vectorial shearing interferometer (VSI)

In a VSI the wave-front under test is compared with itself. Two
identical wave fronts follow paths nearly, but one of them undergoes a
small displacement relative to the other, as shown in Fig. 1. The
shearing vector Δ→ρ describes the displacement of the wave front Wd

(xd,yd) with respect to the original one W(x,y). The superposition of
the wave fronts gives rise to the fringe pattern. At the interference
plane, the incidence IT(x,y) of the fringe pattern is [14]:

IT x; yð Þ = Ib x; yð Þ + Im x; yð Þ cosΔW x; yð Þ: ð1Þ

Here, Ib is the background offset, and Im is the modulated
incidence.

This pattern carries the information of the optical path difference
(OPD) in the sheared direction, and may be expressed as:

ΔW = Wd xd; ydð Þ−W x; yð Þ;
ΔW = W x + Δx; y + Δyð Þ−W x; yð Þ: ð2Þ

From the fringe pattern, the path difference may be obtained as:

ΔW = mλ: ð3Þ

Here m is the order of the interference fringe and λ is the
wavelength.

For small displacements, the distances Δx and Δy may be
considered infinitesimal quantities (dx, dy). Then, the pattern
represents the total differential of the wave-front function in the
shearing direction [15]:

∂W x; yð Þ
∂x dx +

∂W x; yð Þ
∂y dy = mλ: ð4Þ

The shape, and density of the fringe pattern may be controlled by
the direction and magnitude of the shearing vector Δ→ρ. The ability of
the operator to control the number of fringes is particularly useful
when asymmetrical components are tested. ΔW is the OPD (optical
path difference) between wave fronts, given by Eq. (2). The
reconstructed wave front may be found by direct integration of its
gradient, avoiding the evaluation of the arctangent function and the
complex phase reconstruction methods [16–20].

In previous configurations, in one arm of a Mach Zehnder
interferometer the sheared wave front was displaced in a specific
direction according to the relative angle between the wedge prisms
and their separation, but this configuration introduces tilt in the
shearedwave front. A compensator systemwas necessary in the other
arm of the interferometer in order to minimize the tilt deviation
[21,22].

Currently, our implementation of the VSI uses a configuration of
wedge prisms that do not introduce tilt in the sheared wave front and
a compensator system is not needed, as illustrated in Fig. 2. The wave
front under test impinges on the first beam splitter, BS1. Here, the
amplitude is divided into two. In order to shear one wave front, we
use a pair of wedge prisms P1 and P2 as a displacement system in one
arm of the interferometer. In the other arm the wave front continues
its path without being modified. Both wave fronts, partially displaced
with respect to each other, are superimposed after the second beam
splitter, BS2. The fringe pattern is produced in the space behind the
second beam splitter. A high resolution CCD captures the digital
image. The camera is interfaced to a computer, where the images are
stored and further analyzed.

In the current application, it is particularly important to be able to
control separately the magnitude and direction of the shear, in order
to examine an area on the sphere from different directions. The
displacement system introduces no tilt in the wave front and no
changes in the image orientation. The degrees of freedom of the
displacement system, the angle ω of rotation of both prisms and the
distance d between them, allow the operator the requisite control to
displace the wave front vectorially (on any direction and any
magnitude). Additionally, the magnitude of the displacement deter-
mines the sensitivity of the VSI [23].

In the sheared wave front (see Fig. 1), the angle θ depends on the
angle of rotation ω of both prisms. The shearing magnitude jΔ→ρ j is

Fig. 1. Original and displaced wave fronts. The Δx and Δy values are obtained from
vector Δ→ρ and the angle θ.
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