
Spontaneous emission spectra of a four-level atom in photonic crystals driven by two
coherent fields

Chong-Xi Song a, Jie-Hui Huang b, Nian-Hua Liu a,b,⁎
a Institute for Advanced Study, Nanchang University, Nanchang 330031, China
b Department of Physics, Nanchang University, Nanchang 330031, China

a b s t r a c ta r t i c l e i n f o

Article history:
Received 3 August 2010
Received in revised form 20 November 2010
Accepted 20 November 2010

Keywords:
Quantum interference
Photonic crystals
Spontaneous emission spectrum

We investigate the spontaneous emission spectra of a four-level tripod-type atomembedded in aphotonic crystal
and driven by two coherent fields. It is found that due to the quantum interference caused by two driving fields,
the spontaneous emission spectra have different features from the case of only one driving field. The spectra are
sensitively dependent on the detuning of the driving fields. A dark line occurs for someparticular initial states. By
appropriately adjusting the external driving fields, the spectral-line can be narrowed, enhanced or suppressed.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that spontaneous emission depends not only on
the properties of the excited atomic system, but also on the
surrounding environment [1–3] which modifies the density of states
(DOS) of the radiation field. Due to the strong modification of the
DOS of the photonic band gap (PBG) structures [4,5], there are
many novel optical phenomena, for example, the trapping popula-
tion in the atomic systems [6,7], the dark lines in spontaneous
emission spectra [8–10], the enhancement of quantum interference
in spontaneous emission [11–13], the transient lasing without
inversion [14] and the induced transparency by the modified
reservoir [15,16].

Knight and co-workers have investigated the transparency and the
coherent phenomena in photonic crystals of a Λ-type atomic model,
where one transition interacts with free vacuum modes and the other
interacts withmodes near the PBG's edges [17]. Zhang et al. studied the
spontaneous emission spectra of double V-type atoms embedded in a
double-band photonic crystal and found two types of quantum
interference [18], in which the double V-type transitions are respec-
tively coupled to the free vacuummodes and the photonic bandmodes.
Jiang and co-workers [19] considered the transition from theupper level
to an auxiliary level driven by a laser field and investigated the
spontaneous emission of a four-level atomwith two transitions coupled

to the same modified reservoir. Yang et al. calculated the spontaneous
emission spectrum of a four-level atom coupled by three kinds of
reservoirs [20,21]. Xuet al. investigated the transparency induced by the
quantum interference of a six-level atom in a photonic crystal with
defect modes [22].

Recently Yang et al. have carried out a series of research about the
spontaneous emission of atoms embedded in the photonic crystals,
including the anisotropic of the photonic crystal [23–29], the isotropic
of the photonic crystal [30–32] and the double-band photonic crystal
[33–35]. It is shown that the control of spontaneous emission can be
achieved by placing atoms into proper circumstances. An alternative
way to control the spontaneous emission is letting the atom be driven
by a coherent field. In this paper we investigate the spontaneous
emission spectra of a four-level atom embedded in a single-band
photonic crystal and driven by two coherent fields, and discuss the
dependence of the spectra on the relative position of the photonic
band gap and the detuning of external driving field.

2. Theoretical model and equations

Weconsider a four-level atom, as shown in Fig. 1, oneupper level |0〉,
and three lower levels |1〉, |2〉 and |i〉, embedded inphotonic crystals. The
excited level |0〉 is respectively coupled to the lower levels |1〉 and |2〉 by
twocoherentfieldswith frequenciesωp andωc. The transition |0〉→ |i〉 is
coupled to the modified reservoir. Under the rotating-wave-approxi-
mation and the electric-dipole approximation, the interaction Hamilto-
nian can be written as (let ℏ=1)

H = ΩPe
iΔpt j0〉〈1 j + Ωce

iΔct j0〉〈2 j + ∑
λ

gλe
−i ωλ−ω0ið Þt j0〉〈i jaλ + H:C; ð1Þ
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where gλ is the coupling constant between the atomic transition |0〉→
|i〉, aλ and aλ

+ are the annihilation operator and creation operator
for the λth reservoir mode with frequency ωλ, Ωp and Ωc are the
Rabi frequencies of the external driving fields, Δp=ω01−ωp and Δc=
ω02−ωc are the detuning of the external driving fields from
the corresponding resonances, ω01, ω02 and ω0i are the transition
frequencies from level |0〉 to levels |1〉, |2〉 and |i〉, respectively.

In the interaction picture, the state vector of the atomic system at
time t can be expressed as

jψ tð Þ〉 = a0 tð Þ j0;0〉 + a1 tð Þ j1;0〉 + a2 tð Þ j2;0〉 + ∑
λ

aλ tð Þ j i;1λ〉: ð2Þ

Substituting (2) into the Schrödinger equation we get the coupled
equations of motion for the probability amplitudes as

∂a0 tð Þ
∂t = −i∑

λ
gλe

−i ωλ−ω0ið Þtaλ tð Þ−iΩpe
iΔpta1 tð Þ−iΩce

iΔcta2 tð Þ; ð3Þ

∂a1 tð Þ
∂t = −iΩ�

pe
−iΔpta0 tð Þ; ð4Þ

∂a2 tð Þ
∂t = −iΩ�

ce
−iΔcta0 tð Þ; ð5Þ

∂aλ tð Þ
∂t = −ig�λe

i ωλ−ω0ið Þta0 tð Þ: ð6Þ

Weproceed by performing a formal time integration of Eq. (6), and
substitute the result into Eq. (3) to obtain the integral–differential
equation

∂a0 tð Þ
∂t = −∫t

0
dt′a0 t′

� �
∑
λ

g2
λ
e−i ωλ−ω0ið Þ t−t′

� �
−iΩpe

iΔpta1 tð Þ−iΩce
iΔcta2 tð Þ:

ð7Þ

If the reservoir isMarkovian, thenwehave∑λ g2λ e
−i ωλ−ω0ið Þ t−t′

� �
=

γ1 = 2ð Þδ t−t′ð Þ with γ1 being the decay rate from the state |0〉 to the
state|i〉. However, for the single-isotropic model of the photonic crystal
considered here, it is not the case because the density of modes of this
reservoir varies more quickly than that in the free space. To tackle this
problem, we assume the memory kernel [9]

K t−t′
� �

= ∑
λ

g2
λ
e−i ωλ−ω0ið Þ t−t′

� �
≈β3=2∫dωρ ωð Þe−i ωλ−ω0ið Þ t−t′

� �
; ð8Þ

where β is the coupling constant of the atom and the modified
reservoir. The above kernel is calculated by using the appropriate
DOS of the modified reservoir ρ(ω). Substituting Eq. (8) into Eq. (7),
we get

∂a0 tð Þ
∂t = −∫t

0
dt′a0 t′

� �
K t−t′
� �

−iΩpe
iΔpta1 tð Þ−iΩce

iΔcta2 tð Þ: ð9Þ

For convenience, we suppose

a0 tð Þ = b0 tð Þ; ð10Þ

a1 tð Þ = b1 tð Þe−iΔpt ; ð11Þ

a2 tð Þ = b2 tð Þe−iΔct : ð12Þ

Then, Eqs. (3)–(5) can be written as

∂b0 tð Þ
∂t = −iΩpb1 tð Þ−iΩcb2 tð Þ−∫t

0
dt′b0 t′

� �
K t−t′
� �

; ð13Þ

∂b1 tð Þ
∂t = iΔpb1 tð Þ−iΩ�

pb0 tð Þ; ð14Þ

∂b2 tð Þ
∂t = iΔcb2 tð Þ−iΩ�

cb0 tð Þ: ð15Þ

After carrying out the Laplace transformation b̃j sð Þ =
∫

∞

0
e−stbj tð Þdt, we get the solution to the probability amplitude b̃0 sð Þ as

b̃0 sð Þ =
b0 0ð Þ−iΩpb1 0ð Þ = s−iΔp

� �
−iΩcb2 0ð Þ= s−iΔcð Þ

s + Ω2
p = s−iΔp

� �
+ Ω2

c = s−iΔcð Þ + K̃ sð Þ
; ð16Þ

where K̃ sð Þ is the Laplace transform of the kernel defined in Eq. (8).
The memory kernel function can be obtained as

K̃ sð Þ = β3=2∫dω ρ ωð Þ
s + i ω−ω0ið Þ : ð17Þ

For an ideal, perfect photonic crystal with infinite, periodic
structure and without dissipation, the isotropic DOS near the band
edge has the form of ρ ωð Þ = 1

π
1ffiffiffiffiffiffiffiffiffiffiffi

ω−ωg
p Θ ω−ωg

� �
, where Θ is the

Heaviside step function, andωg is the frequency of the upper band gap
edge. This kind of DOS corresponds to the case that the photonic
dispersion curve has an exact band edge, and it is divergent at the
band edge. However, for an actual photonic crystal, the total size is
finite. The sizes of the repeated cells in the periodic structure are not
exactly the same for the precision error in the process or preparation
of the photonic crystals, and the absorption (or dissipation) is always
inevitable. All these factorsmake the band edge indistinct. So we use a
smooth parameter ε [36] to express the density of states as

ρ ωð Þ = 1
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω−ωg

p
ε + ω−ωg

Θ ω−ωg

� �
: ð18Þ

Substituting Eq. (18) into Eq. (17) we can get

K̃ sð Þ = β3=2

i
ffiffiffi
ε

p
+

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
is−ωg + ω0i

q : ð19Þ

Fig. 1. Schematic diagram of a driven four-level atomic system, the thin dashed line
denotes the coupling to the modified reservoir (PBG).
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