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a b s t r a c t

In this paper, we use the Weisskopf–Wigner theory to study the entanglement in the state of the free-
space radiation field produced from vacuum due to atomic decay. We show how bipartite entanglement
is shared between different partitions of the radiation modes. We investigate the role played by the size
of the partitions and their detuning with the decaying atom. The dynamics of the atom-field entangle-
ment during the atomic decay is also briefly discussed. From this dynamics, we assert that such entan-
glement is the physical quantity that fix the statistical atomic decay time.

� 2009 Elsevier B.V. All rights reserved.

Entanglement plays a central role in quantum information sci-
ence where it is seen as an important physical resource for infor-
mation processing beyond the achievable with classical
correlations [1–3]. Investigations in quantum phase transitions
[4,5] and statistical mechanics have been realized from the point
of view of entanglement [6]. In this approach, concepts like ran-
domness, ensemble-averaging or time-averaging are not required.
Instead, thermalization results from entanglement between sys-
tem and environment. Connections between matter and quantum
information theory have also been discussed [7,8]. Such studies
have pointed out that entanglement seems to be important in
other areas of physics besides pure quantum information. It is ex-
actly in this scope that this work is introduced.

Considering entanglement as a legitimate physical quantity,
this paper is intended to study a fundamental process namely
the atomic spontaneous emission. It lies at the core of matter–radi-
ation interaction. The successful description of atomic decay in free
space is one of the remarkable achievements of the quantum the-
ory of radiation [9–11]. Why does an excited atom decay? It is clear
that an isolated atom would never decay from one excited state to
another with lower energy because both are eigenstates of the sys-
tem Hamiltonian. There must be some physical system to couple to
the atom in order drive the electronic transition. This external
agent is the free space electromagnetic field whose zero-point en-
ergy fluctuations are able to cause the atom to decay. In the lan-

guage of quantum information theory, the entanglement
between atom and field is then the responsible for the atomic de-
cay. In what follows, entanglement is studied in the spontaneous
emission phenomenon.

We are particularly interested in the entanglement properties of
quantum fields. In this paper, the quantized field is the bosonic
free-space continuous electromagnetic field. We will analyze the
entanglement properties of this field after atomic decay. Entangle-
ment in discretized bosonic fields have already been studied. In
particular, the entanglement properties of the ground state and
thermal states of this system is studied in detail in [12]. Discrete
versions of real free Klein–Gordon fields have also been studied
from the point of view of entanglement [13]. In this study, the rela-
tion between entanglement, entropy, and area for a specific har-
monic lattice whose continuum limit lead to the Hamiltonian of
the real Klein–Gordon field is analyzed in great detail. These papers
triggered many others studies that also investigated entanglement
in discretized quantum fields [14–17].

The starting point of the present work is the Weisskopf–Wigner
theory of spontaneous emission which is now briefly presented
[9–11]. In the rotating wave approximation, a two-level atom
interacts with the free-space electromagnetic field according to
the interaction picture Hamiltonian [10]

bH ¼ �h
X

k

g�kðr0Þrþâkeiðx�mkÞt þH:c:
� �

; ð1Þ

where x is the angular frequency of the atomic transition (excited
state jai and ground state jbi), r0 is the position of the atom, âk is the
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annihilation operator for the field mode fkg (angular frequency mk),
and

gkðr0Þ ¼ gke�ik�r0 ; ð2Þ

where

ð3Þ

with V a quantization volume, �0 the electric permittivity of free
space, ab the dipole moment for the atomic transition, and �̂k the
polarization vector of the mode fkg. It will be assumed that initially
the atom is in the excited state jai and the field modes are in the
vacuum j0i ¼ j0;0; . . .i. According to (1) the system evolved state
will be

jwðtÞi ¼ caðtÞja;0i þ
X

k

cb;kðtÞjb;1k; f0gi; ð4Þ

where j1k; f0gi represents the field state with one photon in the
mode fkg and the rest in the vacuum, and

caðtÞ ¼ e�Ct=2; ð5Þ

cb;kðtÞ ¼ gkðr0Þ
1� eiðx�mkÞt�Ct=2

ðmk �xÞ þ iC=2
; ð6Þ

with C being the free-space atomic decay constant which is giving
by

C ¼ 1
4p�0

4x3}2
ab

3�hc3 : ð7Þ

In order to obtain the above equations, it was considered that the
intensity of the light associated with the emitted radiation is very
centered about the atomic frequency x. This is the essence of the
Weisskopf–Wigner theory. In this theory, the free-space modes
act as an immediate response reservoir, i.e., the atomic spontaneous
emission is seen as a Markovian process.

Now, the entanglement content in the field state after sponta-
neous decay of the atom is studied in detail. This state is denoted
jc0i and it is obtained from (4) by assuming t � C�1

jc0i ¼
X

k

gkðr0Þ
ðmk �xÞ þ iC=2

j1k; f0gi: ð8Þ

It is worth noticing that the state jc0i is, from the point of view of
quantum information science, a member of an important class of
multipartite entangled states called generalized W states [18]. How-
ever, we must take care when using this state. Although state (8) is
presented as a discrete summation over k, any kind of calculation
using it is to be done transforming it to an integral, i.e., an contin-
uum of modes.

The state (8) represents all modes of the free-space radiation
field, and it is a superposition of the different possibilities of dis-
tributing one photon (emitted by the atom) between the infinity
of modes. Consequently, this is an entangled multipartite state
whose bipartite entanglement between different partitions of radi-
ation modes is now going to be investigated. There are many ways
of partitioning the free-space modes in two partitions. We think it
is physically appealing to choose one partition formed by a central
mode with frequency mq and modes distributed in the interval
ðmq � �; mq þ �Þ (let us call it partition A), and the other partition
formed by the rest (partition B). This is an interesting physical
choice since it allows us to check the effect of having mq either near
or far from resonance with the decaying two-level atom (frequency
separation x), and to check the importance of the size of the par-
titions via the parameter �.

Since jc0i is a pure state, the appropriate entanglement measure
between partitions A and B of the system is the entropy of entan-

glement E ¼ SðqAÞ, where SðqAÞ ¼ �tr½qAlog2ðqAÞ� is the von-Neu-
mann entropy with the reduced state qA ¼ trB½qAB�. It must be
emphasized that the entropy of entanglement is a entanglement
monotone only if the global state is pure. Even though the pure
field state jc0i is achieved only in the limit t � C�1, we will see la-
ter on this paper that our results are still approximately valid for
finite times. This broadens the applicability of our work. The re-
duced state for the partition A can be obtained from (8) by tracing
out modes in partition B. One finds

qA ¼
X

kj

jpjj
2jf0gAihAf0gj þ

X
km ;kn

pmp�nj1km ; f0gih1kn ; f0gj; ð9Þ

where kj refers to a wave vector of some mode in the partition B, km

(kn) to some mode in partition A, jf0gAi to vacuum states of modes
in partition A, j1kmðnÞ ; f0gi means one photon in mode kmðnÞ of parti-
tion A and vacuum for the rest of the modes in that partition, and

pi ¼
gki
ðr0Þ

ðmki
�xÞ þ iC=2

: ð10Þ

The only non-zero eigenvalues of qA are k1 ¼
P

kj
jpjj

2 and
k2 ¼

P
kn
jpnj

2, where kj refers to partition B and kn to partition A.
As mentioned before, the final results must be obtained by passing
to the continuum. In spherical coordinates we have [10]X

k
! 2

V

ð2pÞ3
Z 2p

0
d/
Z p

0
dh sin h

Z 1

0
dkk2

; ð11Þ

and then

X
kj
jpjj

2 ! }ab

6p2�h�0c3

Z mq��

0

m3dm
ðm�xÞ2 þ C2=4

þ
Z 1

mqþ�

m3dm
ðm�xÞ2 þ C2=4

" #
:

ð12Þ

For consistency with the Weisskopf–Wigner used in the derivation
of the state (8), we should again consider that m3 varies little around
mk ¼ x, what allows us now to replace m3 by x3 in the above inte-
grals as well as to extend the lower integration limit of the first
integral to �1 [10]. Making this approximations one obtainsX

kj
jpjj

2 ! 1� 1
p

arctan
2
C
ð�þ mq �xÞ

� �
� 1

p
arctan

2
C
ð�� mq þxÞ

� �
: ð13Þ

Now, we sum the modes referring to partition AX
kn
jpnj

2 ! }ab

6p2�h�0c3

Z mqþ�

mq��

m3dm
ðm�xÞ2 þ C2=4

" #
: ð14Þ

Again, we replace m3 by x3 (but leave the integration limits unal-
tered) to obtain

X
kn
jpnj

2 ! 1
p

arctan
2
C
ð�þ mq �xÞ

� �
þ 1

p
arctan

2
C
ð�� mq þxÞ

� �
:

ð15Þ

It is important to look into normalization of (8) because we must
end up with a physical state after performing the approximations.
In fact, the normalization has been conserved since the sum of
(13) with (15) is equal to one for any values of �, x and mq. With
(13) and (15), one can now easily obtain the entropy of entangle-
ment S ¼ �

P2
i¼1kilog2ki and study the bipartite entanglement be-

tween partitions A and B. In general, two special features of the
entanglement in the field modes should be highlighted, namely
its dependence upon the size of the partitions and upon the detun-
ing between the central frequency of partition A and the atom
D ¼ mq �x. From now on, we will use the dimensionless quantities
~� � �=C and eD � D=C.
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