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a b s t r a c t

We investigate the ultrafast control of coherent population transfer in a K-type three-level system with a
train of pump–Stokes femtosecond pulse pairs, where the pulse sequences can be produced either by
optical delay line or by pulse shaping with sinusoidal phase modulation. It is shown that when the pump
and Stokes pulses in each pair are applied in the counterintuitive order, similar to that in the stimulated
Raman adiabatic passage technique, due to temporal quantum interference (besides optical interference
in the case of overlapped subpulses), ultrafast control of coherent population transfer can be achieved by
scanning the inter-pair time delay or by changing the sinusoidal phase modulation parameters. This
method has potential applications in ultrafast control of chemical reactions and quantum information
processing.

� 2009 Elsevier B.V. All rights reserved.

Much attention has been paid to quantum coherent control of
an atomic or a molecular system from an initial state to a particular
target state in recent years. The underlying physical mechanism of
coherent control is quantum coherence and interference. As is
well-known, there exist two kinds of quantum interferences. One
refers to the interference between two or more different transition
pathways connecting the same initial or final state in the frequency
domain (usually referred to as the ‘‘Brumer–Shapiro” scenario)
[1–3], and the other refers to the interference between two or more
time-separated transition pathways connecting the same initial
and final states in the time domain [4–8]. Three main strategies,
that is, temporal coherent control (TCC), optimal control (OC),
and adiabatic passage (AP), have been proposed to realize quantum
coherent control [9]. TCC uses temporal quantum interference to
achieve selectivity of population transfer [5–8]; OC employs
pulse-shaping technique to optimize the laser pulse for controlling
population transfer [10–13], and AP can realize selectivity and
completeness of population transfer between two quantum states,
such as stimulated Raman adiabatic passage (STIRAP) and Stark-
chirped rapid adiabatic passage [14–17]. Apart from exerting one

of the above-mentioned methods, the combination of two of them
has also been exploited recently to realize quantum control.
Shapiro et al. [18,19] developed a method of executing complete
population transfer between quantum states by merging AP and
pulse-shaping techniques. Baumert [20] combined the strategies
of TCC and pulse shaping to realize the control of sodium atomic
two-photon transitions, and Kral and Shapiro [9] proposed a way
of combining AP and coherent control, termed as coherently con-
trolled adiabatic passage (CCAP), to achieve both selectivity and
completeness of population transfer. By using a shaped fs fre-
quency comb formed by a train of fs mode-locked pulses, Ye
et al. [21,22] presented an efficient scheme for precise control of
molecular dynamics and atomic two-photon transition. Recently,
we have studied the ultrafast coherent population transfer in a
K-type three-level system driven by a train of weak pump–Stokes
femtosecond pulse pairs with two pulse sequences having the
same optical phases [23]. In this paper, we investigate the ultrafast
control of coherent population transfer in a K-type three-level sys-
tem with a train of pump–Stokes fs pulse pairs by combining TCC
and pulse-shaping techniques, where the pulse sequences can be
either the phase-locked interferometrically-generated pulses
through optical delay line or the sinusoidally phase-modulated
pulses through pulse shaping. By scanning the inter-pair time
delay or by changing the sinusoidal spectral phase modulation
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parameters, ultrafast control of coherent population transfer can
be realized with the pump and Stokes pulses in each pair applied
in the counterintuitive order, similar to that in the STIRAP
technique.

The considered K-type three-level system, as shown in Fig. 1,
interacts with a train of pump–Stokes fs laser pulse pairs, where le-
vel 1 and upper level 2 is coupled by the pump pulse train, and lev-
els 2 and 3 is coupled by the Stokes pulse train. Firstly, we consider
the pump and Stokes pulse sequences are the phase-locked inter-
ferometrically-generated pulses, which can be experimentally pro-
duced by the same laser pulse with an optical delay line or an
optical cavity, as discussed by Salour [5] and Vitanov and Knight
[24]. For simplicity, we assume that both the pump and Stokes
pulse trains are formed by N equally-spaced pulses with the same
amplitude envelopes and peak values. The electric field ESðtÞ of the
Stokes pulse train can be written as ESðtÞ ¼

PN
n¼0E0fSðt � nTÞ cos

½xSðt � nTÞ�, where xS is the central frequency of the Stokes field,
fSðt � nTÞ is the electric-field amplitude envelope of the nth Stokes
pulse with the peak value of E0, and T is the repetition period of the
Stokes pulse train. We assume the time delay between the first
pump–Stokes pair is s, the first pair has the same initial optical
phase, and the time origin is chosen at the peak of the first Stokes
pulse, so the electric field EpðtÞ of the pump pulse train can be writ-
ten as EpðtÞ ¼

PN
n¼0E0fpðt � s� nT 0Þ cos½xpðt � nT 0Þ�with the repeti-

tion period of the pump pulse train being T 0. The Rabi frequencies
of the nth Stokes and pump pulses are set to be Gaussian with the
amplitude envelopes of the form XnSðtÞ ¼ X0S exp½�ðt � nTÞ2=T2

p�
and XnpðtÞ ¼ X0p exp½�ðt � s� nT 0Þ2=T2

p�; respectively, where Tp is
the pulse duration, X0pðSÞ ¼ l1ð2Þ � E0=�h is the peak value of the Rabi
frequency of the pump (Stokes) pulse, with l1 (l2) being the dipole
moment for the transition 1–2 (2–3). For simplicity, we assume
that X0p and X0S are equal to each other, and both laser fields are
tuned to resonance with the respective transitions. We neglect
the population decay from upper level 2, as the interaction time
(about tens to hundreds of fs) is far smaller than the population de-
cay time (about tens of ns). In the rotating-wave approximation,
the time-dependent Hamiltonian of the atom–field system can be
written as

H ¼ �h

0 X�pðtÞ 0
XpðtÞ 0 XSðtÞ

0 X�SðtÞ 0

0
B@

1
CA ð1Þ

In the above equation, XSðtÞ and XpðtÞ are the Rabi frequencies
of the Stokes and pump pulse trains, respectively. The time
evolution of the system can be readily treated by resolving the
time-dependent Schrodinger equation with the fourth-order Run-
ge–Kutta integrator. In what follows, the population is initially in
level 1, and the relevant parameters are scaled with fs (or fs�1).

Fig. 2 displays the time evolution of the populations in the three
states with both the pump and Stokes laser fields tuned to reso-
nance with the respective transitions under different inter-pair
time delay T of the Stokes pulse train with X0p = X0S = 0.2 fs�1,
Tp = 30 fs, s = 40 fs, and xS = xp = p rad/fs or xS = 0.8xp = 0.8p
rad/fs for two pairs of phase-locked pump–Stokes pulses excitation

(shown in Fig. 2a). In order to have a fixed relative optical
phase between each pump–Stokes pair, we set xST ¼ xpT 0. In
this case, the Rabi frequencies XpðtÞ and XSðtÞ in Eq. (1) can be
written as XpðtÞ ¼

PN
n¼0XnpðtÞ expðjnxpT 0Þ and XSðtÞ ¼

PN
n¼0XnSðtÞ

expðjnxSTÞ, respectively. Note that for the degenerate case
xS ¼ xp ¼ p rad/fs, that each laser field interacts with only one
pair of states can be realized with the photons of different polari-
zation from a same laser beam [25]. As seen from Fig. 2b and d,
when the inter-pair time delay T is equal to zero, which means
the two pulses in each train are completely overlapped, nearly
complete population transfer can be obtained via the STIRAP pro-
cess in both cases xS ¼ xp ¼ p rad/fs and xS ¼ 0:8xp ¼ 0:8p rad/
fs. However, for the case of the inter-pair time delay T = 2 fs (see
Fig. 2c and e), due to temporal destructive quantum interference
besides optical interference, almost no population transfer from
state 1 to state 3 can take place, and only a small transient popu-
lation would reside in the excited state 2 during the evolution
process.

In order to see how the inter-pair time delay T can control pop-
ulation transfer, we show in Fig. 3 the final populations in the three
states 1, 2, and 3 as a function of T for two pairs of phase-locked
pump–Stokes pulses excitation for the two cases
xS ¼ xp ¼ p rad/fs and xS ¼ 0:8xp ¼ 0:8p rad/fs. Obviously, as
seen in Fig. 3a, ultrafast control of population transfer can be ob-
tained by varying the inter-pair time delay T. When T = 0 fs, perfect
population transfer can be obtained. With the increase of T, the
transfer efficiency exhibits fast oscillations with the period of 2 fs

Fig. 1. The K-type three-level system driven by a train of pump–Stokes laser pulse
pairs with the central frequencies xp and xS , respectively.

(a)

(b) (c)

(d) (e)

Fig. 2. (a) The pump and Stokes pulse sequences formed by two pulse pairs with
the first intrapair time delay s and inter-pair time delays T and T 0 . (b–e) The time
evolution of the populations in the states 1 (dashed line), 2 (dotted line), and 3
(solid line) with both the pump and Stokes laser fields tuned to resonance with the
respective transitions with X0p = X0S = 0.2 fs�1, Tp = 30 fs, s = 40 fs, xST ¼ xpT 0 ,
xS ¼ xp ¼ p rad/fs (b and c) and xS ¼ 0:8xp ¼ 0:8p rad/fs (d and e) for T = 0 fs (b
and d), and T = 2 fs (c and e).
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