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a b s t r a c t

This paper predicts that gray spatial solitons can exist in biased two-photon photovoltaic photorefractive
crystals. Under appropriate conditions and in the steady state, the gray spatial solitons solution of the
optical evolution equation is obtained. The properties associated with these solitons, such as their inten-
sity profile, intensity full width at half-maximum, width, transverse velocity and phase distribution, are
discussed as functions of their normalized intensity and degree of ‘‘grayness”. Relevant examples are
provided.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Since their theoretical prediction and first experimental obser-
vation [1,2], photorefractive (PR) spatial optical solitons have at-
tracted much special interest, for these solitons can be formed at
low light intensity and in two dimensions, and are potentially use-
ful for all-optical switching, beam steering, and optical intercon-
nects [3,4]. Most often, the photorefractive nonlinearity
responsible for the self-trapping of solitary beams relies on the
application of the external electric field, the photovoltaic field of
the photorefractive materials, or both of them. Thus, screening sol-
itons have been investigated in biased PR crystals due to the non-
uniform screening of the bias field [5–9], photovoltaic solitons
have been investigated in PR crystals resulting from the photovol-
taic effect of the crystals [10–12], and screening-photovoltaic soli-
tons have also been proved in biased photovoltaic PR crystals
owning their existence to both photovoltaic effect and spatially
non-uniform screening of the applied field [13,14]. Moreover, it
has been proved that holographic solitons [15,16], counter-propa-
gating solitons [17], elliptical solitons [18], discrete solitons in
waveguide arrays [19], and solitons in anisotropic media [20] could
also form in biased or unbiased PR crystals.

In 2003, for the first time, Ramadan et al. observed the self-con-
finement of light beams at 633 nm via two-step absorption pro-
cesses [21]. Castro-Camus and Magana provided a theoretical
model to describe the two-photon PR effect [22]. Castro-Camus
model includes a valence band (VB), a conduction band (CB), and
an intermediate allowed level (IL). The intermediate allowed level
is used to maintain a quantity of excited electrons from the valence
band by the gating beam. These electrons are then excited again to
the conduction band by the signal beam. The pattern of the signal
beam can induce a spatial dependent charge distribution that gives
rise to nonlinear changes of refractive index in the medium. Based
on this model, several groups have investigated spatial solitons due
to two-photon PR effect in biased or unbiased crystal [23–26].
Their results not only show the existence of dark and bright spatial
solitons, but gray solitons and soliton pair as well. Very recently,
we had just predicted that spatial solitons are possible in biased
two-photon photovoltaic PR crystals [27]. Inasmuch as these spa-
tial optical solitons result from both the spatially non-uniform
screening of the bias electric field and the photovoltaic effect, we
termed these solitons two-photon screening-photovoltaic (TPSP)
solitons.

In this paper, we demonstrate the existence of gray TPSP soli-
tons in biased two-photon photovoltaic PR crystal. In the steady
state and under appropriate conditions, the gray solitons solution
of the optical wave evolution equation is obtained. The properties
associated with these solitons, such as their intensity profile, inten-
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sity full width at half-maximum (FWHM), transverse velocity and
phase distribution are discussed in detail.

2. Dynamical evolution equation of TPSP solitons

We start our analysis by considering an optical beam propagat-
ing in a biased two-photon photovoltaic PR crystal along the z axis.
The crystal, an external electric field with voltage bias Va, and a
resistor are connected in a chain by electrode leads. The beam is
permitted to diffract only along the x direction. The crystal is put
with its optical axis along the x coordinate and is illuminated by
the gating beam. Moreover, let us assume that the incident optical
beam is linearly polarized along the x direction, and the external
bias field is applied in the same direction. As usual, we express
the optical field of the incident beam in terms of the slowly varying
envelope /, i.e. E ¼ x̂/ðx; zÞ expðikzÞ, where k = k0ne, k0 ¼ 2p=k0, ne

is the unperturbed extraordinary index of refraction and k0 is the
free-space wavelength of the light wave employed. Under these
conditions the optical beam satisfies the following envelope evolu-
tion equation [6,27].

i/z þ
1

2k
/xx �

k0

2
ðn3

e r33EscÞ/ ¼ 0; ð1Þ

where /z = o//oz, /xx = o2//ox2, r33 is the electro-optic coefficient of
the TPPR crystal, and Esc is the induced space-charge field.

The space-charge field in Eq. (1) can be obtained from the set of
rate, current, and Poisson’s equations proposed by Castro-Camus
and Magana [22], which describes the two-photon PR effect in a
medium in which the photovoltaic current is nonzero. In steady
state, by neglecting the diffusion and losses effects, the space-
charge field Esc can be obtained as follows [27].

Esc ¼ gEa
ðI21 þ I2dÞðI2 þ I2d þ c1NA=s2Þ
ðI2 þ I2dÞðI21 þ I2d þ c1NA=s2Þ

þ EP

� s2ðgI21 � I2ÞðI2 þ I2d þ c1NA=s2Þ
ðs1I1 þ b1ÞðI2 þ I2dÞ

; ð2Þ

where g = 1/(1 + p), p ¼ eln1 SD
W , l and e are the electron mobility

and the charge, n1 = n(x ? ±1) is the electron density in the re-
gions x ? ±1; D is the resistance, W is the x width of the PR crys-
tal and S is the surface area of the crystal’s electrodes. From the
expression of g we can see that it is a positive parameter associ-
ated with the resistance and is bounded between 0 6 g 6 1.
For the case of g = 1, which corresponding to the case of D = 0,
which implies that Ea can be totally applied to the crystal. For
the case of g = 0, which corresponding to the open-circuit condi-
tion with D ?1, and no bias field is applied to the crystal in this
case; Ea = Va/W, Va is the external bias voltage, when the spatial
extent of the soliton beam is much narrower than the width W
of the PR crystal, this expression can hold [6]; EP = jcNA/el is
the photovoltaic field, NA is the acceptor or trap density, j is the
photovoltaic constant; c and c1 are the recombination factors of
the CB–VB and IL–VB transitions, respectively; s1 and s2 are photo-
excitation crosses; I2d = b2/s2 is the dark irradiance intensity; b1

and b2 are the thermoionization probability constants for the tran-
sitions of VB–IL and IL–CB; I1 denotes the intensity of the gating
beam, which can be considered as a constant; I21 = I2(x ? ±1,
z), I2 denotes the intensity of the soliton beam. According to Poyn-
ting’s theorem, I2 can be expressed as I2 = (ne/2g0)|/|2, where
g0 = (l0/e0)1/2.

By substituting Eq. (2) into Eq. (1), we can establish the enve-
lope evolution equation of TPSP solitons. For convenience, we
adopt the following dimensionless coordinates and variables, i.e.
n ¼ z=ðkx2

0Þ, s = x/x0 and / = (2g0I2d/ne)1/2U. Where x0 is an arbitrary
spatial width. Under these conditions, the normalized envelope U
satisfies the following dynamical evolution equation [27]:

iUnþ
1
2

Uss�gb
ðqþ1ÞðjUj2þ1þrÞ
ðjUj2þ1Þðqþ1þrÞ

U�asðgq�jUj
2ÞðjUj2þ1þrÞ
jUj2þ1

U¼ 0:

ð3Þ

Where Un = oU/on, Uss = o2U/os2, q = I21/I2d is the intensity ratio of
the soliton beam at g ? ±1 with respect to I2d, a ¼ ðk0x0Þ2

ðn4
e r33=2ÞEp, b ¼ ðk0x0Þ2ðn4

e r33=2ÞEa, s = b2/(s1I1 + b1) and r = c1NA/
s2I2d = c1NA/b2. Eq. (3) represents the normalized dynamical evolu-
tion equation of TPSP solitons. As we can see, TPSP solitons result
from both the spatially non-uniform screening of the applied field
(Ea or b) and the photovoltaic effect (Ep or a), they differ from both
screening solitons in a biased non-photovoltaic two-photon PR
crystal [23] and photovoltaic solitons in a two-photon PR photovol-
taic crystal without an external bias field [26]. In fact, Eq. (3) can be
used to describe the evolution of two-photon screening solitons or
two-photon photovoltaic solitons under appropriate conditions.

3. Solution of the gray TPSP solitons

Now we look for the gray spatial solitons solution of Eq. (3), in
doing so, we introduce the moving coordinates g = s � tn, f = n, and
substitute the transformation U(s, n) = A(g, f) exp(itg) exp(it2f/2)
into Eq. (3), we can find that the new envelope A(g, f) satisfies
the same evolution equation of Eq. (3), i.e.

iAfþ
1
2

Agg�
gbðqþ1ÞðjAj2þ1þrÞ
ðjAj2þ1Þðqþ1þrÞ

A�asðgq�jAj2ÞðjAj2þ1þrÞ
jAj2þ1

A¼ 0:

ð4Þ

Where Af = oA/of, Agg = o2A/og2. In the new moving-coordinate sys-
tem t represents the normalized transverse velocity of the gray
TPSP solitons. Eq. (4) is just the Galilean invariance of Eq. (3), and
the solution of Eq. (4) automatically satisfies Eq. (3) and vice versa.
According to [8,9], the gray TPSP spatial solitons solution of Eq. (4)
can be expressed as

A ¼ q1=2yðgÞ exp ilf� iJ
Z g

0

dĝ
y2ðĝÞ þ iU0

� �
; ð5Þ

where J is a real constant to be determined, U0 is an arbitrary phase,
y(g) is a normalized real function bounded between jyðgÞj 6 1, y(g)
satisfies the boundary conditions: y2(0) = m, y0(0) = 0, y(g ? ±1) = 1
and all the derivatives of y(g) are also zero at infinity. Note that the
parameter m (0 < m < 1) describes the soliton grayness, i.e., the
intensity at the beam centre is I2(0) = mI21, and also that m = 0 cor-
responds to a dark soliton. By employing the condition J = t, we
obtain

Uðs; nÞ ¼ q1=2yðgÞ exp i lþ t2

2

� �
nþ it g�

Z g

0

d~g
y2ð~gÞ

� �
þ iU0

� �
:

ð6Þ

We put the condition J = t so that the phase of the gray spatial
solitons is constant when g or s ? ±1, which is consistent with the
excitation conditions right at the origin [8].

By substituting Eq. (6) into Eq. (3) we find that the normalized
intensity profile y(g) satisfies the following ordinary differential
equation:

d2y
dg2 � 2ly� t2

y3 � 2
gbð1þ qÞ
1þ qþ r 1þ r

1þ qy2

� �
y� 2asqðg � y2Þ

� ð1þ r
1þ qy2Þy ¼ 0: ð7Þ

According to the boundary conditions of y(g) at infinity, we ar-
rive at

t2 ¼ �2l� 2gb� 2as½gq� q� rþ rðgqþ 1Þ=ð1þ qÞ�: ð8Þ
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