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Phase-dependent quantum features of the light scattered by a two-level atom driven by a monochromatic
laser were investigated theoretically using the method of conditional homodyne detection [Carmichael,
Castro-Beltran, Foster, Orozco, Phys. Rev. Lett. 85 (2000) 1855]. The splitting of fluctuations into terms of
second and third order correlations of the dipole noise is obtained analytically. For the out-of-phase
quadrature and weak laser driving the former are known to be squeezed. The third order fluctuations, newly
found in this paper, grow with the laser intensity, contaminate squeezing below saturation, and dominate
above it. They are responsible for the non-classicality and non-Gaussianity of the fluorescence for moderate
to strong driving. Conditional homodyne detection, in both time and frequency domains, illustrates more
general phase-dependent effects than squeezing, and is much less restricted by finite collection and quantum
detector efficiencies than standard homodyne detection schemes.

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

Resonance fluorescence is a cornerstone of quantum optics for its
displays of quantum signatures of light, such as antibunching [1] and
sub-Poissonian statistics [2] (intensity fluctuations), and squeezing
[3,4] (phase-dependent amplitude fluctuations). Squeezing in the
light scattered by a single two-level atom is still an open problem. The
requirement of low laser intensity meets serious obstacles in the
homodyne detector's finite collection and quantum efficiencies, while
for stronger driving saturation destroys squeezing [5]. Proposed
remedies include increase of detection's solid angle [6] and enhance-
ment of squeezing via bad cavities [7], feedback [8], and atomic
coherence [6].

Recently, Carmichael, Orozco, and coworkers demonstrated for a
cavity QED system [9,10] a robust scheme for the measurement of
weak squeezed light: conditional homodyne detection (see also Refs.
[11–17]). CHD features two inequalities that a quantum field,
squeezed or not, violates, thus non-classicality of a quadrature does
not depend on squeezing. In CHD, the dynamics of a quadrature (field
amplitude) is recorded by balanced homodyning on the cue of photon
(intensity) detections. The conditioning on photon detections greatly
reduces counting noise and nearly eliminates the problem of detector
efficiency by not degrading the signal, making this method a much

better prospect for measurement of squeezing of resonance fluores-
cence than standard homodyne methods.

Progress in this direction was reported by Gerber et al. who
measured the amplitude–intensity correlation of the resonance
fluorescence of a three-level atom in a setup similar to CHD [18].
The regression of the dipole field upon a photon emission, which
projects the atom in the ground state, was demonstrated. The
squeezing conditions, however, were not achieved. One wonders if
squeezing in resonance fluorescence is close to be seen. Here and in
CHD, the weak field limit, due to the low photon flux from the atom,
translates into impractical data collection times due to laser and setup
instabilities. Thus, experiments deviate from this limit and squeezing,
though maximal near saturation [4], gets mixed with barely explored
additional fluctuations.

In this paper we investigate the character, mainly non-classical
and non-Gaussian, of phase-dependent fluctuations in resonance
fluorescence for arbitrary laser field strengths within the framework
of CHD, in both the time and spectral domains, providing better
understanding of amplitude noise than the restrictive squeezing. The
amplitude–intensity correlation is of third order in the dipole's
electric field amplitude. Splitting this field into a mean plus noise,
second and third order correlations in the dipole fluctuations are
obtained. In the weak field limit the out-of-phase quadrature's second
order term is squeezed [3,4]. The third order term, the main analytical
result of this paper, grows with the laser intensity and, still below
saturation, contaminates the squeezed part, actually enhancing the
characteristic negative peak in the spectrum. This regime is probably
closer, experimentally, than the deep weak field limit. Above
saturation, on the other hand, the spectrum has the Rabi sidebands
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(second order term) mixed with a large third order term. The latter
not only signal a deviation from Gaussian (second order) noise, but
account for the non-classicality of the out-of-phase quadrature in the
strong field regime, as seen from the inequalities of CHD [9,10].

Non-Gaussian (non-zero odd-order) fluctuations in the field's
amplitude are still poorly explored in quantum optics. Although third
order fluctuations were also studied in phase-sensitive intensity
correlations in the stationary state of resonance fluorescence [5,19],
their role emphasized the relation between squeezing and intensity
fluctuations instead. More recently, Shchukin and Vogel [20] proposed
a hierarchy of conditions for the non-classicality of a field to all orders,
but specific results for resonance fluorescence and many other optical
systems are non-existent.

An additional feature of CHD is that it reveals non-Gaussian noise
when the amplitude–intensity correlation is asymmetric, i.e., the
light's intensity and amplitude have different noise properties, as
observed in cavity QED both numerically [9,12] and experimentally
[10], and numerically for the resonance fluorescence of a three-level
atom [17]. For a two-level atom the small Hilbert space imposes a
symmetric correlation [12,17], but the calculations for positive and
negative intervals have to be interpreted differently.

This paper is organized as follows: a brief review of the theory of
CHD, the splitting of fluctuations in resonance fluorescence and their
(non-) classicality are the subject of Section 2. The spectral
representation is presented in Section 3, and the conclusions are
given in Section 4. Appendix A deals with the correlation for negative
intervals, and Appendix B presents the analytical solutions to the
equations for the correlations.

2. Theory

A setup of CHD is sketched in Fig. 1 (see also Ref.[9]). A quadrature
of the field, Eϕ∝σϕ, is measured in balance homodyne detection for a
time τ whenever a photon is detected, I∝σ+σ−, giving a third order
correlation in the field amplitude [17], which in normalized form is

hϕ τð Þ = h: σþ 0ð Þσ− 0ð Þσϕ τð Þ :i
hσþσ−isthσϕist

; ð1Þ

where σ±, σz are Pauli pseudo spin operators,

σϕ = σ−eiϕ + σþe
−iϕ

� �
= 2 ð2Þ

is the dipole quadrature operator, ϕ is the phase between the strong
local oscillator and the driving field, and the dots : : indicate time and
normal operator ordering. The brackets indicate averaging via a
density operator, and the subindex st denotes steady state values.

Ideally, conditioning and normalization make the correlation inde-
pendent of detector efficiencies.

We work in a frame rotating at the laser frequency ν,
σ̃FðtÞ = σFðtÞe∓iνt , and split the dipole dynamics into a mean
αF = hσ̃Fist plus fluctuations Δσ̃FðtÞ. The intensity at the start
detector is proportional to

hσþσ−i = αþα− + hΔσþΔσ−i; ð3Þ

where α+α− and hΔσþΔσ−i are the coherent and incoherent parts,
respectively, of the emission. The input field at the BHD port is

σ̃ϕðtÞ = αϕ + Δσ̃ϕðtÞ; ð4Þ

where αϕ = hσ̃ϕist , and

Δσ̃ϕ =
1
2

Δσ̃−eiϕ + Δσ̃þe
−iϕ

� �
: ð5Þ

For some sources the mean field of a quadrature is zero. Such is the
case of theϕ=0quadrature in resonance fluorescence when the atom
and laser frequencies are equal, where σ0=0, leading to h0(τ)=0. In
order to observe this quadrature the source field has to be mixed with
a coherent offset with real amplitude A in phase with the local
oscillator [9]. Hence, we replace σ± with b±=σ±+Ae± iϕ, and σϕ

with bϕ=σϕ+A. Thus, their means are βF = hbFist and βϕ = hbϕist .
The intensity at the start detector is hbþb−ist .

With σ̃FðtÞ = αF + Δσ̃FðtÞ and the offset, Eq. (1) is decomposed
into second and third order correlations for the dipole fluctuations,
hϕ(τ)=hϕ

(2)(τ)+hϕ
(3)(τ), where

hð2Þϕ τð Þ = 1 +
h: βþΔσ̃−ð0Þ + β−Δσ̃þð0Þ
� �

Δσ̃ϕðτÞ :i
βϕhbþb−ist

; ð6aÞ

hð3Þϕ τð Þ = h: Δσ̃þ 0ð ÞΔσ̃− 0ð ÞΔσ̃ϕ τð Þ :i
βϕhbþb−ist

: ð6bÞ

The amplitude–intensity correlation is time-symmetric for two-level
atom resonance fluorescence [17]. For positive intervals, hϕ(τ) is the
measurement of a quadrature conditioned on a photon detection, the
main subject of this paper. For negative intervals, however, the
correlation is that of a measurement of the intensity conditioned on a
quadrature detection. For completeness, this is included in Appendix A.
In the following, we restrict the treatment to the exact resonance case,
for which analytic solutions to the equations for the correlations of
fluctuation operators are obtained in Appendix B.

2.1. Second and third order correlations

First, we quote the steady state values of the dipole operators from
the Bloch equations [17,21,22]:

α∓ = hσ̃∓ist =Fi
Y =

ffiffiffi
2

p

1 + Y2 ; ð7aÞ

hσþσ−ist =
1
2

1 + hσ zistð Þ = Y2
= 2

1 + Y2 ; ð7bÞ

where

Y =
ffiffiffi
2

p
Ω= γ; ð8Þ

Ω is the atom-laser coupling and γ is the spontaneous emission rate.
The numerator in the second term of Eq. (6a) gives the second

order fluctuations,

Hð2Þ
ϕ τð Þ = 2Re α− + Að ÞhΔσ̃þ 0ð ÞΔσ̃ϕ τð Þi

h i
; ð9Þ

Fig. 1. Sketch for conditional homodyne detection. Balanced homodyne detection
(BHD) of a quadrature Eϕ(τ) is made on the cue of photon detections I(t). LO is the local
oscillator beam and BS are beam splitters.
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