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We show that gray spatial optical solitons are possible in biased photorefractive polymers under steady-state
conditions. We find that for a given material parameter the absolute value of a gray photorefractive
polymeric soliton's phase decreases with an increase in the beam's grayness, whereas it increases with the
material parameter for a given beam's grayness and that the full width half maximum (FWHM) of the gray
soliton beam's intensity increases with the beam's grayness when the normalized background intensity and
the material parameter are fixed and decreases with an increase in the normalized background intensity
when the material parameter is fixed. On the other hand, we also show that N coupled beam evolution
equations in biased photorefractive polymers can exhibit multicomponent gray solitons. These multi-
component gray solitons can be obtained provided that the N coupled beams share the same polarization,
wavelength, and are incoherent with one another. The characteristics and stability properties of these
multicomponent gray solitons are also discussed in detail.
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Since their first experimental observation [1], photorefractive spatial solitons have attracted substantial research interest [2–20]. Many
branches of photorefractive spatial solitons have been suggested, including quasi-steady-state solitons [1–3], screening solitons [4–7],
photovoltaic solitons [8–10], screening-photovoltaic solitons [11–14], solitons in centrosymmetric photorefractive crystals [15], and solitons in
photorefractive semiconductors [16]. Among these photorefractive solitons, screening solitons, photovoltaic solitons, and screening-photovoltaic
solitons are those most thoroughly studied, all of which occur in steady state. To date, bright, dark, and gray solitons [5,7], bright–bright, dark–
dark, and bright–dark soliton pairs [17], and multicomponent bright, multicomponent dark, and multicomponent bright–dark solitons [18] have
been predicted under steady-state conditions. Recently, bright and dark solitons are addressed in biased photorefractive polymers, which are
known as bright and dark photorefractive polymeric solitons [19,20]. Photorefractive polymers can providemany advantages over the traditional
photorefractive inorganic crystals. These advantages include flexibility, cheapness, and ease of processing. However, gray solitons, gray–gray
soliton pairs, and multicomponent gray solitons in biased photorefractive polymers have not been investigated yet.

In this paper, we show that gray spatial optical solitons are possible in biased photorefractive polymers under steady-state conditions. Our
analysis indicates that the absolute value of a gray photorefractive polymeric soliton's phase decreaseswith an increase in the beam's grayness for
a givenmaterial parameter and increaseswith thematerial parameter for a given beam's grayness and that the full width half maximum (FWHM)
of the gray-soliton beam's intensity increaseswith the beam's graynesswhen the normalizedbackground intensity and thematerial parameter are
fixed and decreaseswith an increase in the normalized background intensitywhen thematerial parameter is fixed.Moreover, we also show thatN
coupled beam evolution equations in biased photorefractive polymers can exhibit multicomponent gray solitons. These multicomponent gray
solitons can be obtained provided that the N coupled beams share the same polarization, wavelength, and are incoherent with one another. The
functional form and characteristics of these multicomponent gray solitons are discussed and their stability properties are also considered.

To start, let us first consider an optical beam that propagates in a film of photorefractive polymer along the z axis and is allowed to diffract only
along the x direction. Moreover, let us assume that the thickness of the photorefractive polymer thin film is oriented along the x coordinate and is
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about tens tohundredsofmicrometers and that the external bias electricfield is applied in the xdirection. The electricfield componentEof theoptical
beam satisfies the Helmholtz equation

∇2E + k0n′b
� �2E = 0; ð1Þ

where k0=2π /λ0 is the free-space wave vector, λ0 is the common free-space wavelength, and n′b is the nonlinear index of refraction. By
expressing the optical field E in terms of slowly varying envelope ϕ, i.e., E = iϕðx;zÞ expðikzÞ, where k=k0nb is the propagation constant, nb is the
unperturbed refractive index, and i is the unit vector pointing to the x direction, we find that Eq. (1) leads to the following evolution equation

iϕz +
1
2k

ϕxx +
k0Δ n′2

b

� �
2nb

ϕ = 0; ð2Þ

where Δ n′2
b

� �
= n′2

b −n2
b , ϕz=∂ϕ /∂z, etc. For typical photorefractive polymers, the index changes for x- and y-polarized lights are approximately

given by [19]

Δ n′2
b

� �
x
= ðCBR + CEOÞE2; ð3Þ

Δ n′2
b

� �
y
= −CBR = 2 + CEO = 3ð ÞE2; ð4Þ

where CBR = 2= 45ð Þð4πNchÞΔα μD =kBTað Þ2,Nch is the number density of the chromophores,Δα = α==−α⊥,α is themolecular optical polarizability,
μD is themolecular permanent dipolemoment, kB is the Boltzmann constant, Ta is the absolute temperature, CEO = 1= 5ð Þð4πNchÞβ333 μD = kBTað Þ, β333

is the effective molecular optical hyperpolarizability tensor, and E is the electric field. Moreover, the electric field can be obtained from the model
equations [21] and it is given by [19]

Em+1 = Em+1
∞

I∞ + Ib
I + Ib

; ð5Þ

where I = I x;zð Þ is the power density of the optical beam and it is related to the slowly varying envelope ϕ through Poynting's theorem, i.e.,
I = nb = 2η0ð Þ ϕj j2. In Eq. (5),m is amaterial parameter ranging from less than 1.0 to greater than 3.0, Ib is the background illumination, E∞ and I∞ are,
respectively, the constant electric field and the constant power density, away from the center of the optical beam. Substitution of Eq. (5) into Eqs. (3)
and (4) yields the following relation:

Δ n′2
b

� �
= Cx;yE

2
∞

I∞ + Ib
I + Ib

� �2= ðm + 1Þ
; ð6Þ

where Cx=CBR+CEO and Cy=−CBR/2+CEO /3. For convenience, let us adopt the following dimensionless variables and coordinates: ϕ =
2η0Ib =nbð Þ1=2U, ξ = z = kx20

� �
, and s=x/x0, where x0 is an arbitrary spatial width. By employing these latter transformations and by substituting

Eq. (6) into Eq. (2), the normalized envelope U is found to satisfy

iUξ +
1
2
Uss +

ðk0x0Þ2Cx;yE
2
∞

2
ρ + 1

1 + Uj j2
� �2= ðm + 1Þ

U = 0; ð7Þ

where ρ= I∞ / Id is the normalized background intensity. Notice that Cx,yN0 corresponds to dark solitons, whereas Cx,yb0 corresponds to bright
solitons [19]. In the limit Cx,yN0 and choosing the characteristic length x0 =

ffiffiffi
2

p
= k0E∞

ffiffiffiffiffiffiffiffi
Cx;y

q� �
, we rewrite Eq. (7) as

iUξ +
1
2
Uss +

ρ + 1
1 + Uj j2
� �2= ðm + 1Þ

U = 0: ð8Þ

In what follows, we will discuss the possible gray soliton solutions of Eq. (8).
Let us first express the normalized envelope U in the following fashion [5]:

U = ρ1=2yðsÞ exp i νξ + ∫
s

0

Γds′

y2ðs′Þ

 !" #
; ð9Þ

where ν is a nonlinear shift of the propagation constant, y(s) is an even function of s, and Γ is a real constant to be determined. For gray solitons one
requires the boundary conditions y(s→±∞)=1, y′(s=0)=0, y2(s=0)=δ (0bδb1), y′(s→±∞)=0, and y″(s→±∞)=0. Notice that the
parameter δ describes the soliton grayness. Substitution of Eq. (9) into Eq. (8) leads to

y″−2νy−Γ2

y3
+ 2

ρ + 1
ρy2 + 1

� �2= m + 1ð Þ
y = 0; ð10Þ
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