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A non-Markovian master equation is obtained for a two level atom driven by a phase noisy laser. The der-
ivation is based on obtaining an equation for the density operator of the system averaged over the pre-
vious histories of the external noise. Averaging over the current value of the noise variable by means of
the Zwanzig-Nakajima projection operator technique leads to a master equation with memory and a

local-in-time master equation. The solutions to the resultant non-Markovian master equation, the struc-
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tural properties of the equation, and the amenability of the equation to unravelling by the quantum tra-
jectory method are all investigated.

© 2009 Elsevier B.V. All rights reserved.

1. Introduction

All physical systems, to a greater or lesser extent, are open, that
is the system of interest interacts with its surrounding environ-
ment. This environment is often identified with the ‘rest of the uni-
verse’, in which case it is typically treated as a very large quantum
system with many degrees of freedom in thermal equilibrium at
some temperature — a thermal bath or reservoir. Less generally,
the ‘environment’ can be a simple quantum system, e.g. a single
qubit. In either case, the interaction between the system and its
environment results in the system experiencing ‘quantum noise’
which shows up in the system exhibiting fluctuations, decoher-
ence, and possibly irreversible dissipative dynamics. A further kind
of open system is one in which the interaction with the external
world can be modelled as deterministic or stochastic classical influ-
ences such as, for instance, a classical EM field interacting with a
quantum mechanical atom. In either case, what is usually of inter-
est is the state of the system alone. In the wholly quantum case,
this state is given by a reduced density operator obtained by trac-
ing over the environmental degrees of freedom. In the case of a
classical stochastic external influence, a density operator descrip-
tion is obtained by taking an average over all the realizations of
the associated classical stochastic process. The aim then is to de-
rive the master equation for this system density operator p, not
only because the solution to this equation provides a full descrip-
tion of the system dynamics, but also because the structure of
the master equation can be revealing of the character of this under-
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lying dynamics, as well as providing physical interpretations of this
dynamics, such as those implied by a quantum trajectory unravel-
ling of the equation.

The master equation can be shown, for instance by the projec-
tion operator techniques of Zwanzig-Nakajima [12,13], to assume
the form of an integro—differential equation:
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i.e. there appears a memory kernel #'(t,t) which determines the
extent to which the current state of the system depends on its past
history.

An important distinguishing feature of the underlying dynamics
is whether it is Markovian or not. Loosely speaking, the evolution is
said to be Markovian if the future state of the system depends so-
lely on its current state, and not on its earlier history. No physical
system is truly Markovian, but provided the correlation between
the system and environment becomes negligibly small over a time
which is infinitesimal compared to all the other time scales of the
system evolution, memory effects can be neglected: the Markov
approximation. In effect the memory kernel .#'(t,t) is approxi-
mated by a delta function ~ §(t — 1), an approximation that is valid
in very many cases of physical interest. The corresponding circum-
stance for a classically driven system is if the external influence is
linearly coupled delta function correlated white noise. The result in
either case is the much-studied and well-understood quantum
Markovian master equation which assumes a particular form, the
so-called Lindblad form given by [1,2]
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where the y,, are real and > 0. This equation preserves the trace
and Hermiticity of the system density operator, and the solution de-
fines a completely positive linear map Z (t)p(0) = p(t). The Lind-
bald structure also implies that such a master equation can be
unravelled as an ensemble of quantum trajectories, with the possi-
bility of a concomitant measurement interpretation [3,4].

If the correlations between the system and environment persist
sufficiently long for the Markov approximation not to be justified,
as is the case in many physical situations of interest, e.g. in solid
state systems, or in quantum Brownian motion [5], then the master
equation would be expected to be non-Markovian, and assume the
form of Eq. (1). Similarly, if the system is driven by external classi-
cal colored noise, the master equation for the averaged density
operator should also be non-Markovian. Krzysztof Wédkiewicz
(KW) contributed significantly to developing an understanding of
non-Markovian systems in both senses, for instance in the study
of quantum non-Markovian effects in resonance fluorescence [6],
effects of classical phase noise in strong laser-atom interactions
[7-9], or more recently in the study of memory effects in the
non-Markovian versions of the Bloch equations [10,11]. In these
latter works the structure and properties of the master equation it-
self and of the quantum evolution it describes, in particular the
importance of completely positive evolution, was the focus of
attention.

It is possible to push this result further using the time-
convolutionless operator technique [14] which leads to a local-
in-time first-order differential equation for p (see also [15]). The
possible form of this master equation that preserves the Hermitic-
ity and trace of p, though not necessarily complete positivity is
implicit in the work Gorini-Kossakowski-Sudarshan [2] and is
given by
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i.e. the generator .#(t) may depend on time, it may give rise to neg-
ative quantum jump probabilities when Re[y, (t)] <0 and hence
does not yield an obvious quantum trajectory unravelling, it will
not necessarily generate a completely positive map and finally,
the equation will not necessarily be valid for all time due to a gen-
eric property of such equations: the generator .#(t) may become
singular at a finite time [16,17]. The overall structure of the master
equation is very similar to that of the Markovian master equation,
and has been referred to, and will be referred to here, as being of
quasi-Lindblad form.

Even though non-Markov quantum systems play an increas-
ingly important role in many areas of physics there is currently
no fully developed theory of non-Markovian systems. Amongst
other issues, one of the challenges in formulating a theory of
non-Markovian open systems is the paucity of models for which
it is even possible to derive an exact master equation [18], though
in recent times more powerful techniques have been developed
which show promise of changing this state of affairs [19,20]. But
it is systems driven by classical stochastic influences that have
been a fertile source of non-Markovian master equations, as can
be seen in the recent works of KW cited above, and, in the work
of others, including, e.g. [21-23].

In this paper, we present in Section 2 an approach to deriving
the master equation for a class of systems driven in a possibly
non-linear fashion by classical noise. The method used is closely
related to the stochastic Liouville master equation approach devel-
oped by Kubo [24,25]. It is shown that the master equation for the
system obtained by averaging over this noise will, in general, be
non-Markovian. The master equation for an example of interest

for many years in quantum optics is then derived in Section 3, this
being the master equation for a two level atom driven by a phase
noisy laser. In Section 3.2 the master equation of the form of Eq.
(1) is derived, and the local-in-time master equation derived and
discussed in Section 3.3 where it will be shown to exhibit many
of the characteristics mentioned above of non-Markovian master
equations: quasi-Lindblad structure, negative damping, and singu-
lar behavior in time. However, it will be shown that the master
equation generates a completely positive map. A brief discussion
of possible quantum trajectory unravellings of this equation are
addressed in Section 3.4, followed by a conclusion.

2. Derivation of general equation

The aim here is to derive a general way of constructing the mas-
ter equation for a system driven by external classical stochastic
process ¢(t), a simple one-dimensional random walk or Wiener
process. Before constructing this master equation, it is useful to
consider how the probability distribution P(¢,t) of ¢ can be con-
structed. If we assume that in a small time interval At, there is
equal probability RAt of ¢ increasing or decreasing by an amount
A¢ then we have

P(¢,t + At) = P(¢,t)(1 — RAt) + %RP(d) —Ag,t) +%RP(¢ +Ag,t).
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is the constant diffusion rate, this leads to the well-known diffusion
equation
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For the quantum system under consideration, stochasticity enters
by virtue of the system Hamiltonian ﬁ(d)(t)) being dependent on
the stochastic variable ¢. Let p(¢,t) be the density operator for
the system at time t for the current value of the random variable
¢(t). It will be normalized to unity, i.e.

Tr[p(¢, )] = 1. (7)

The density operator p(¢,t) will be the density operator obtained
by averaging over all the previous history of evolution that lead
to the random variable ¢ having the current value ¢. For a small
time interval At, the density operator p(¢,t+ At) will be made up
from three contributions depending on whether the p(¢,t) evolves
freely with no change in ¢, or else there have occurred ‘jumps’
p(p £ AP, t) — p(¢,t + At). The probability of these alternatives
are (1 —RAt) and 1RAt respectively. The states p(¢,t) and p(¢=+
A¢,t) have to be weighted by the probabilities P(¢,t) and P(¢+
Ag,t) of the system being in the states p(¢,t) and p(¢ + Ag,t) at
time t. Putting this all together, and normalizing the state yields
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