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a b s t r a c t

We investigate the entanglement dynamics and decoherence of a two-qubit system under a quantum
spin environment at finite temperature in the thermodynamics limit. For the case under study, we find
different initial states will result in different entanglement evolution, what deserves mentioning here
is that the state jWi ¼ cos aj01i þ sin aj10i is most robust than other states when p=2 < a < p, since
the entanglement remains unchanged or increased under the spin environment. In addition, we also find
the anisotropy parameter D can suppress the destruction of decoherence induced by the environment,
and the undesirable entanglement sudden death arising from the process of entanglement evolution
can be efficiently controlled by the inhomogeneous magnetic field f.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Entanglement is one of the most striking features of quantum
mechanical systems that have no classical analog. It has been the fo-
cus of much work recently due to its key role in the topical area of
quantum information processing [1]. Over the past few years, there
has been considerable interest in investigating entanglement in
quantum spin systems with Heisenberg interactions [2–7], since
the Heisenberg model, as a simple but realistic solid-state system,
not only have been used to simulate a quantum computer, as well
as quantum dots [8,9], nuclear spins [10], electronic spins [11],
and optical lattice [12], but also display useful applications in quan-
tum state transfer [13]. However, in the previous studies, the de-
tailed interaction between the system and the environment is not
an essential part of the matter. On the other hand, from the practical
point of views, the real quantum systems will unavoidably interact
with the surrounding environments and thus leads to decoherence.
This is one fundamental obstacle to perform quantum computation.
Therefore, it is indispensable to take into account of the decoherence
caused by the interaction between the system and the environment.

Recently, the dynamic behavior of a single spin or several spins
interacting with a spin bath has attracted much attention [14–18].
However, in most case it is very difficult to obtain an exact solution

to the evolution of the reduced density matrix with the environ-
ment modes traced over in the case of the non-Markovian process.
In Ref. [19], using a novel operator technique, the authors present
an exact calculation of the dynamics of the reduced density matrix
of two coupled spins in a spin environment in the thermodynamics
limit at finite temperature. The results show that the dynamics of
the entanglement depend strongly on the initial state of the
system, the coupling between the two-spin qubits, the interaction
between the qubit system and environment, the interaction
between the constituents of the spin environment, the environ-
ment temperature, as well as the detuning controlled by a locally
applied external magnetic field. Later, the authors in Ref. [19] study
the dynamics of a central spin coupling with its environment at
finite temperature under the thermodynamics limit [20]. In view
of the above results, we find only the initial state j00i, j11i, and
1ffiffi
2
p ðj00i þ j11iÞ are considered in Ref. [19], and other initial states
and parameters, such as inhomogeneous magnetic field and anisot-
ropy are rarely included. Therefore, in this paper, considering other
initial states, we study the entanglement evolution of two-qubit
system interacting with a quantum spin environment at finite
temperature in the thermodynamics limit with taking into account
the influence of inhomogeneous magnetic field and anisotropy.

To quantify the amount of entanglement between the two
qubits, we consider concurrence defined by Wootters [21]

C ¼ maxfk1 � k2 � k3 � k4;0g; ð1Þ
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where the quantities k1 P k2 P k3 P k4 are the square roots of the
eigenvalues of the matrix R ¼ qðry � ryÞq�ðry � ryÞ. q� denotes the
complex conjugate of q and ry is the normal pauli operators. The
concurrence C ¼ 0 corresponds to an unentangled state and C ¼ 1
for a maximally entangled state. For the special case

q ¼

q11 0 0 q14

0 q22 q23 0
0 q�23 q33 0

q�14 0 0 q44

0
BBB@

1
CCCA; ð2Þ

the concurrence can be easily obtained

C ¼ 2 maxfjq23j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q11q44
p

; jq14j �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q22q33
p g: ð3Þ

This letter is organized as follows. In Section 2, we introduce the
model and derive the time evolution by the novel operator
technique. In Section 3, we present the result of entanglement
dynamics for different initial states, and discuss the effects of inho-
mogeneous magnetic field and anisotropy parameter on the entan-
glement evolution. Finally, we conclude in Section 4.

2. Hamiltonian evolution

Here, we extend the system Hamiltonian of the model in Ref.
[19] by considering the inhomogeneous magnetic field and anisot-
ropy while keep the spin environment unchanged. The Hamilto-
nian of our model is H ¼ HS þ HSB þ HB, where HS, HSB and HB

denote the Hamiltonian of the system, system-bath interaction
and bath, respectively. They can be written as

HS ¼ ðl0 þ fÞSz
01 þ ðl0 � fÞSz

02 þXðSþ01S�02 þ S�01Sþ02Þ þ DSz
01Sz

02; ð4Þ

HSB ¼
g0ffiffiffiffi

N
p ðSþ01 þ Sþ02Þ

XN

i¼1

S�i

" #
þ g0ffiffiffiffi

N
p ðS�01 þ S�02Þ

XN

i¼1

Sþi

" #
; ð5Þ

HB ¼
g
N

XN

i–j

ðSþi S�j þ S�i Sþj Þ; ð6Þ

where the external magnetic fields are assumed to be along the
z-direction, l0 describes the uniformity of the field while f mea-
sures the degree of the inhomogeneity of the field. X is the coupling
constant between any two-qubit spins and D is the anisotropy
parameter. Sþ0i and S�0iði ¼ 1;2;3Þ are the spin–flip operators of the
spin system, respectively. Sþi and S�i are the corresponding of the
ith qubit spin in the bath. N is the number of the bath atoms. g0

is the coupling constant between the qubit system spins and bath
spins, whereas g is that between the bath spins. Both constants
are rescaled as g0=

ffiffiffiffi
N
p

and g=
ffiffiffiffi
N
p

[22–25]. Using the collective angu-
lar momentum operators J� ¼

PN
i¼1S�i , the Hamiltonian Eqs. (5) and

(6) turn out to be

HSB ¼
g0ffiffiffiffi

N
p ðSþ01 þ Sþ02ÞJ� þ

g0ffiffiffiffi
N
p ðS�01 þ S�02ÞJþ; ð7Þ

HB ¼
g0

N
ðJþJ� þ J�JþÞ � g: ð8Þ

After the Holstein–Primakoff transformation:

Jþ ¼ byð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � byb

p
Þ; J� ¼ ð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
N � byb

p
Þb; ð9Þ

with ½b; by� ¼ 1, the Hamiltonian Eqs. (7) and (8) can be written as

HSB ¼ g0ðS
þ
01 þ Sþ02Þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s
bþ g0ðS

�
01 þ S�02Þb

y

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s
; ð10Þ

HB ¼ g by 1� byb
N

 !
bþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s
bby

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� byb

N

s2
4

3
5� g: ð11Þ

In the thermodynamic limit (i.e., N !1) at finite temperature,
we have

HSB ¼ g0 ðS
þ
01 þ Sþ02Þbþ ðS

�
01 þ S�02Þb

y
h i

;

HB ¼ 2gbyb:
ð12Þ

Here we have applied the approximation that byb=N tends to be
vanishing, since the energy of the excitations original from the
interaction between the system and the bath is very low. In the fol-
lowing, we are interested in the density matrix evolution of the
spin system, by which we can know the entanglement dynamics
under decoherence induced by the spin environment. Since the
Hamiltonian is time independent, the density matrix evolves for
the total system is

qðtÞ ¼ e�iHtqð0ÞeiHt; ð13Þ

where we assume that the initial density matrix qð0Þ is separable
between the system and the bath, i.e. qð0Þ ¼ qSð0Þ � qB. Here the
initial state of the spin system is described by qSð0Þ. The density
matrix of the environment satisfies a thermal distribution, i.e.
qB ¼ e�HB=kT=Z, where Z is the partition function and the Boltzmann
constant k is set to one in this paper. Then we can obtain the re-
duced system density matrix by tracing out the environment degree
of freedom, i.e. qSðtÞ ¼ TrBqðtÞ.

For two-qubit system, there are two types of Bell-like states,

jUi ¼ cos aj00i þ sin aj11i; jWi ¼ cos aj01i þ sinaj10i; ð14Þ

with 0 6 a 6 p. In Ref. [19], the authors have studied the entangle-
ment evolution for the initial system state j00i, j11i, and 1ffiffi

2
p ðj00iþ

j11iÞ in the absence of inhomogeneous magnetic field and anisot-
ropy. Here we use jUi and jWi to serve as the initial states of the sys-
tem taking into account the inhomogeneous magnetic field and
anisotropy. Namely, qSð0Þ ¼ jUihUj and qSð0Þ ¼ jWihWj. First, by
taking state jWi as the initial system state, the reduced density
matrix for the system can be written as

qSðtÞ ¼
1
Z

cos2 aTrB e�iHtj01ie�HB=Th01jeiHt
� �

þ 1
Z

sin2 aTrB e�iHtj10ie�HB=Th10jeiHt
� �

þ 1
Z

sin a cos aTrB e�iHtj01ie�HB=Th10jeiHt
� �

þ 1
Z

sin a cos aTrB e�iHtj10ie�HB=Th01jeiHt
� �

; ð15Þ

and we can easily obtain

Z ¼ 1
1� e�2g=T

: ð16Þ

Following the idea of operator technique introduced in Ref. [19],
we first need to convert the time evolution equation of the qubit
system under the action of the total Hamiltonian into a set of cou-
pled non-commuting operator variable equations. Considering the
constituents of Hamiltonian H, we can write

e�iHtj01i ¼ Aj00i þ Bj01i þ Cj10i þ Dj11i; ð17Þ

where A;B;C and D are functions of operators b, by, and time t. Using
the Schrödinger equation identity

i
d
dt

e�iHtj01i
� �

¼ H e�iHtj01i
� �

; ð18Þ
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