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a b s t r a c t

Numerical stochastic integration is a powerful tool for the investigation of quantum dynamics in inter-
acting many-body systems. As with all numerical integration of differential equations, the initial condi-
tions of the system being investigated must be specified. With application to quantum optics in mind, we
show how various commonly considered quantum states can be numerically simulated by the use of
widely available Gaussian and uniform random number generators. We note that the same methods
can also be applied to computational studies of Bose–Einstein condensates, and give some examples of
how this can be done.

� 2009 Published by Elsevier B.V.

1. Introduction

The theoretical study of non-equilibrium quantum many-body
dynamics is a growing area, especially since the experimental
achievement of trapped Bose–Einstein condensates. Many of the
methods used for theoretically investigating condensates have
been adapted from theoretical quantum optics [1], with varying
degrees of success. One particular approximation technique that
proved extremely successful in quantum optics is linearisation of
the fluctuations about solutions of the classical equations of mo-
tion. This technique, if used appropriately, is a very powerful tool
for the calculation of the steady-state spectra of intracavity para-
metric processes [2]. However, in a dynamically evolving system,
or one operating near phase transitions or critical points, this
method can give incorrect answers [3,4]. The validity of the
approximation depends on three conditions. The first of these is
that the solution of the classical equations is the same as the
mean-field solution of the full quantum equations. The second
and third are that the fluctuations about these solutions are in
some sense small and that they can be represented as Gaussian,
so that moments of higher than second order vanish. In the study
of trapped Bose–Einstein condensates, the Hartree–Fock–Bogo-

liubov (HFB) method is a closely related approximation [5], and
therefore needs to be used with the same care as the linearised
fluctuation approximation in quantum optics.

When these conditions are not met, there are still a number of
ways to proceed. In some very rare cases it may be possible to solve
directly either a master equation for the density matrix, or even the
Heisenberg equations of motion for the actual system operators.
However, the most interesting quantum dynamics are not gener-
ally restricted to such cases. One set of methods which has been
very successful is the phase-space representations originally used
to develop stochastic differential equations in quantum optics
[6]. These allow common classes of quantum Hamiltonians to be
mapped via master and Fokker–Planck equations onto stochastic
differential equations. In some cases the Fokker–Planck equation
may be solved directly for a pseudoprobability distribution which
then allows for the calculation of operator moments [1,7]. Once
again, these cases are rare and can often only be solved in the stea-
dy-state regime. The method of choice if we wish to obtain dynam-
ical quantum information is then to numerically integrate the
stochastic equations of motion. As with any numerical analysis of
differential equations, this then requires that the initial conditions
be specified, as these can have marked effects on the subsequent
dynamics, in both optical [8,9] and interacting atomic and molec-
ular systems [10–16]. In what follows we will begin with a brief
outline of the theory behind the phase-space representations and
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then show how to numerically simulate some of the more common
and useful initial quantum states of optics and condensed atom
physics, in both the positive-P [17] and Wigner representations
[18].

2. Phase-space representations of the density matrix

Phase space techniques are a powerful tool to investigate the
full quantum dynamics of interacting quantum systems in cases
where it is impractical to solve either the Heisenberg equations
of motion or the master (von Neumann) equation for the density
matrix. Instead of working with operators or density matrices, they
allow us to work directly with classical c-number variables, which
are amenable to manipulation on available computers. Perhaps
more importantly, the complexity of the computation scales with
the number of interacting modes rather than with the size of the
Hilbert space, which is often completely intractable. In fact, a sin-
gle-mode quantum calculation has been performed using these
methods for the order of 1023 interacting quanta [19], which would
be completely out of the question using other methods. There are a
number of phase-space representations, among them being the
Wigner representation [18], the Glauber–Sudarshan P representa-
tion [20,21], the Q representation [22] (sometimes known as the
Husimi representation), the complex P representation [17], and
the R representation [20]. The most useful for numerical work
are the positive-P and truncated Wigner representations [23], the
latter being an approximation to the full Wigner representation.

2.1. Truncated Wigner equations

Historically, the first of these phase-space representations was
the Wigner representation [18], which was formulated as a
pseudoprobability function for the position and momentum of a
particle. Mathematically, the quadrature phase amplitudes of
quantum optics are completely equivalent to position and momen-
tum, so that the Wigner function is a frequently used tool for
describing nonclassical states of bosonic fields. Quantum mechan-
ical expectation values for operator products expressed in sym-
metrical order are found naturally in the Wigner representation
as classical averages of the corresponding Wigner variables. As
an example, making the correspondence between the single-mode
annihilation operator â and the complex Wigner variable a, we find
that

a�a ¼ 1
2
hâyâþ ââyi ¼ N þ 1

2
; ð1Þ

where N is the number of quanta in the mode. Given a general Ham-
iltonian which is some combination of bosonic creation and annihi-
lation operators, H, we find the von Neumann equation as

i�h
dq
dt
¼ H;q½ �; ð2Þ

from which the equation of motion for the Wigner function, W , is
found using the correspondence rules,
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Following the standard methods [24], as long as the equation found
by the above procedure has no derivatives of higher than second or-
der, it can be mapped onto a set of stochastic differential equations
for the variables a and a�. Unfortunately, all interesting problems
result in derivatives of third order or more and, although methods
exist for mapping the resulting generalised Fokker–Planck equa-

tions onto stochastic difference equations [25], these are not very
useful in practice. A common practice is to truncate the partial dif-
ferential equation for the Wigner function at second order, often
justified by claiming that the effect of these terms is small. This pro-
cedure may be formally justified by requiring the system modes to
be highly occupied, and results in stochastic differential equations
in what is known as the truncated Wigner representation. If there
are no second order derivatives, the resulting equations are regular
and quantum noise enters via the initial Wigner distribution for the
variables. In optical problems, this then becomes functionally
equivalent to stochastic electrodynamics [26] and has been shown
to give misleading results in some cases [27,28]. This approximate
method has also been used with some success in the study of
Bose–Einstein condensates [29–32] and is closely related to ‘‘classi-
cal field methods”, including the stochastic Gross–Pitaevski equa-
tion [33–36]. The appropriate initial states to use in the truncated
Wigner equations are exactly the same as those that would be used
in a full Wigner representation, with the approximations entering
into the equations of motion.

2.2. Positive-P representation

The Glauber–Sudarshan P representation [20,21] is another rep-
resentation of the density matrix in terms of coherent states and
gives averages of the phase-space variables which are equivalent
to normally-ordered operator expectation values,

ða�Þman ¼ hðâyÞmâni: ð4Þ

As photodetectors naturally measure normally-ordered averages,
this would at first glance seem to be an extremely useful represen-
tation. It does, however, have two serious drawbacks. The first is
that it is difficult to represent any state which is ‘‘more quantum”
than a coherent state, as these do not possess positive and analytic
P-functions. Although a P-function can be written for any quantum
state in terms of generalised functions [37], it is difficult to see how
to sample these numerically. The second drawback arises when we
consider the P-representation Fokker–Planck equation, found using
the operator correspondences

âq$ aP; âyq$ a� � @

@a
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qâ$ a� @

@a�

� �
P; qây $ a�P: ð5Þ

It is readily seen that, for any interesting problem, the resulting
Fokker–Planck equation will not have a positive-definite diffusion
matrix and therefore will not be able to be mapped onto stochastic
differential equations. The positive-P representation [17] was devel-
oped to circumvent this problem by using a doubled phase space.
For Hamiltonians which lead to derivatives of no higher than second
order, this results in a Fokker–Planck equation which always has a
positive-definite diffusion matrix and therefore can always be
mapped onto stochastic differential equations. The price which
has to be paid is that, instead of having a and a� as complex conju-
gate variables, the variables corresponding to this pair become
independent. These are written in various ways, but in this article
we will write the pair as a and aþ, and the appropriate equations
can be found by naively using the P representation correspondences
of Eq. (5) and then substituting aþ for a�. The independence of the
variables can cause serious stability problems with the numerical
integration, but for problems where the integration converges, the
positive-P representation is an extremely powerful theoretical tool
[38]. As a final remark, we note that a method has been developed
for mapping Hamiltonians which would give higher than second or-
der derivatives in a generalised Fokker–Planck equation onto sto-
chastic difference equations [39], which is useful for analysing
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