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Abstract

In this paper we define the structural information content of graphs as their corresponding graph entropy. This definition is based on local vertex
functionals obtained by calculating j-spheres via the algorithm of Dijkstra. We prove that the graph entropy and, hence, the local vertex functionals
can be computed with polynomial time complexity enabling the application of our measure for large graphs. In this paper we present numerical
results for the graph entropy of chemical graphs and discuss resulting properties.
© 2007 Elsevier Ltd. All rights reserved.
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1. Introduction

In computational chemistry (Cramer, 2004) complex systems are often represented as graphs (Harary, 1969) where the ver-
tices correspond to the components and the edges to the interactions, respectively. Therefore, graph-theoretical measures and
techniques are extremely useful to analyze and quantify the complexity of chemical structures or reaction networks (see, e.g.,
Bonchev, 1983, 2003; Caporossi et al., 2003; Gutman and Polansky, 1986; Minoli, 1975; Randié, 1975). For example, a well-
known contribution in this direction has been made by Randi¢ (1975) who developed a topological index for measuring the
extent of branching of the carbon-atom skeleton of organic molecules (Caporossi et al., 2003). A problem that is strongly
related to the problem of measuring the complexity of chemical structures or systems is to determine the structural infor-
mation content of such systems representing graphs (Bonchev, 1983; Mowshowitz, 1968b; Rashewsky, 1955; Trucco, 1956).
In this context structural information content is defined as the entropy of the underlying network topology (Bonchev, 1983;
Mowshowitz, 1968a, b). Classical methods to measure the entropy of graphs are often based on the problem to find a parti-
tion of the underlying vertex set. Starting from such a partition, one can straightforward obtain a probability distribution. A first
attempt in this direction has been given by Rashewsky (1955). Rashewsky (1955) defined the entropy of directed/undirected and
unweighted graphs by partitioning the vertices in sets of indistinguishable vertices according to their dependence on local and
non-local degree-dependencies. He finally applied his concept to graphs of metabolic reactions and living organisms. Further
algebraical approaches to determine the entropy of graphs have been stated by Trucco (1956) and Mowshowitz (1968b). These
approaches are mainly based on obtaining certain vertex partitions by using pure algebraical principles and tools, e.g., determin-
ing groups of a graph. Hence, the obtained vertex partitions lead us directly to an entropy of a graph. Particularly, Mowshowitz
(1968b) examined properties of graph entropies by determining graph automorphisms (Harary, 1969). Then, in order to define
the entropy of a graph, it is necessary to determine the automorphism group of the corresponding graph algorithmically. How-
ever, it is well known that this procedure is for arbitrary graphs computationally extensive (McKay, 1981). Now, we finish our
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brief review on techniques to measure the entropy of graphs by stating a listing of indices for characterizing chemical graph
structures:

o Indices based on topological characteristics, e.g., vertex orbits (Bonchev, 1983; Mowshowitz, 1968b; Rashewsky, 1955; Trucco,
1956).

Indices based on chromatic decompositions (Bonchev, 1983; Harary, 1969).

Indices based on adjacency matrices (Bonchev, 1983).

Indices based on vertex degrees (Bonchev, 1983).

Indices based on the incidence of a graph (Bonchev, 1983).

Indices based on cycle matrices of a graph (Bonchev, 1983).

Indices based on distance matrices of graphs (Bonchev, 1983).

Indices based on graph decompositions, e.g., the HosoyA-graph decomposition (Bonchev, 1983; Hosoya, 1971).

Centric indices and connectivity indices (Bonchev, 1983).

These indices are also based on the main idea to create certain partitions for defining the entropy of chemical graphs, where
the elements of such a partition can be described by graph-theoretical quantities (Bonchev, 1983). Finally, classical graph entropy
definitions from computer science have been introduced by Korner (1973); Simonyi (2001) and Csiszér et al. (1990). Korner
(1973) and Simonyi (2001) originally focused on the problem to determine the performance of a best possible encoding of infor-
mation emitted by a certain information source. Finally, Csiszar et al. (1990) defined the entropy of a graph with respect to a
certain probability distribution P, where P has been defined by using the so called vertex packing polytope of a graph (Csiszar
et al., 1990). Further definitions and techniques to determine a graph entropy can be found in (e.g., Bonchev, 1983; Simonyi,
2001).

Some words of precaution: In the present paper we provide a definition for the structural information content of graphs as its
corresponding entropy. We want to emphasize that we are dealing exclusively with discrete objects, namely graphs, and, hence, all
resulting entities derived from these discrete objects can be interpreted unambiguously as SHANNON-like entities. For this reason
there can be no confusion about words like information because in this paper information is always used in a SHANNON-like
sense.

Our graph entropy definition is based on a functional that is based on graph-theoretical quantities related to certain vertex sets.
Starting from this definition, we assign a probability value to each vertex in the graph by using metrical properties of graphs
(Skorobogatov and Dobrynin, 1988). Hence, by defining such a functional, we avoid the problem to determine vertex partitions with
pure algebraical principles because such procedures are often computationally expensive. We show that our procedure to determine
the structural information content of a graph requires polynomial time complexity and, hence, can be computed even for large
graphs as, e.g., gene networks, consisting of hundreds or even thousands of vertices. Finally, we present some numerical results to
demonstrate how to calculate our measure.

2. Information Theoretic Functionals for Graphs

In this section, we define a functional to measure the entropy of graphs that is based on metrical graph properties (Skorobogatov
and Dobrynin, 1988). In order to define this functional, we start with some basic notations (Cover and Thomas, 2006; Harary, 1969;
Skorobogatov and Dobrynin, 1988). We want to mention that in this paper we deal throughout with undirected, connected graphs
without loops and multiple edges.

G = (V,E), |V| < oo denotes a finite undirected graph, where £ C (< MML : MFRACLINETHICKNESS ="0" > V2
< /MML : MFRAC >). G = (V, E) is called connected if for arbitrary vertices v; and v; there exists an undirected path from
v; to vj. Otherwise, we call G unconnected. In the following, Guc denotes the set of finite, undirected and connected graphs.
The degree of a vertex ve V is denoted by §(v) and equals the number of edges e € E which are incident with v. Starting from
G = (V, E) € Guc, o(v) = max,, ¢ yd(u, v) is called the eccentricity of v € V, where d(u, v) denotes the shortest distance between
u and v. We notice that d(u, v) is a metric. p(G) = max, ¢ yo(v) is called the diameter of G. Now, we define for G = (V, E) € Gyc
the following vertex sets:

Si(;, G) :={veV]|dw,v)=j, j>1}, (N

is called the j-sphere of v; regarding G. Fig. (1) shows the process to determine j-spheres. In order to explain this process exemplarily,
we choose an arbitrary vertex v; € V. As a first step, we determine all vertices v € V such that d(v;, v) = 1 where the number of
such vertices forms the cardinality of the 1-sphere S1(v;, G), i.e., |S1(v;i, G)|. As a second step, we determine all vertices v € V such
that d(v;, v) = 2 and, hence, we get |S2(v;, G)|. We continue this step until j = p holds. By using, e.g., the well-known DUUKSTRA-
algorithm (Cormen et al., 1990; Dijkstra, 1959), we repeat this process for each vertex v; € V, 1 <i < |V|. Now, we observe that
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