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a b s t r a c t

Considering the anisotropic dispersion model, the upper state population and spontaneous emission
spectrum of three-level lambda-type atom with two transitions coupled to separate reservoirs are inves-
tigated using the resolvent operator. The upper state population reaches to a steady state value after a
weak oscillation when the decay rate is zero and one transition frequency is inside the bandgap. The
spectrum associated with each transition was given. Compared with results that were obtained by using
isotropic dispersion model, the shape of spectrum changes significantly, and no dark line appears in the
spectra.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

It is well known that spontaneous emission depends not only on
the energy level structures of an atom but also on the nature of the
surrounding environment, more specifically on both the electric
field per photon and on the density of states (DOS) of the radiation
field. Modified coupling between the radiating atom and the field
may be obtained when the atom is in a high-Q cavity, as this
changes the electric field per photon. The DOS in Photonic crystals
(PCs) is quite distinct to that of vacuum, therefore the emergence
of PCs provides a new way to control spontaneous emission and
leads to prediction of many interesting effects, such as the appear-
ance of photon–atom bound states and spectral splitting [1], en-
hanced quantum interference effects [2], coherent control of
spontaneous emission [3], modified reservoir induced transpar-
ency [4] and the coherent phenomena in PCs [5]. Moreover,
Lambropoulos et al. have given an overview about basic quantum
electrodynamics and quantum optics aspects of two and multi-le-
vel atomic system in structured reservoirs including damped cav-
ity and photonic crystals [6]. In many early studies, isotropic
dispersion model of PCs is adopted, namely, the photon dispersion
relation near the band edge is one-dimensional [7,8] and the DOS is

proportional to (x �xe)�1/2 (xe is the upper band edge fre-
quency). Considerable discrepancy may be caused since the DOS
in isotropic model presents singularity at the band edge. Thus, a
modified model, i.e. the anisotropic dispersion model [7,8] was
introduced to improve the theoretical prediction [9,10].

The dynamics of a three-level atom in a cascade and Lambda
configuration with both transitions coupled to a single structured
reservoir has been investigated [11–15], such as Garraway and
Dalton have investigated the spontaneous emission property for
a cascade atom in a high-Q cavity [15]. However, in the case of
the two transitions coupled to separate reservoirs, the decay prop-
erties of a three-level lambda-type atom have been studied consid-
ering one-dimensional dispersion model in which a dark line was
found in the spectrum [1]. Yang et al. [16] studied the spontaneous
emission properties of a three-level Lambda-type atom embedded
in anisotropic photonic crystals using Laplace transform method,
and they discussed mainly the components of spontaneous emis-
sion field and the influence of bandgap on spontaneous emission
spectrum. However, in our paper, for the same configuration, we
will throw some light on the effect of the decay rates of the system
and the photonic bandgap on decay properties of the atom under
anisotropic model, and the results presented here are considerably
different from that in Ref. [16]. It is found that, the trapping of
upper state population occurs when the decay rate is zero and
the frequency of transition coupled to modified reservoir is inside
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the bandgap. Furthermore, the shape of spectral line is dependent
on the bandgap reservoir and decay rate of the atomic system.
Moreover, we give the spectral line corresponding to the transition
which is coupled to photonic bandgap reservoir when decay rate is
zero.

2. Theoretical model

We consider a three-level K-type atom with two lower levels
jbi and jci coupled by the electric dipole to a common excited level
jai, as shown in Fig. 1. The atom is assumed to be initially in the
state jai. The transition jai ! jci is coupled to a modified reservoir
i.e. photonic bandgap reservoir, while the transition jai ! jbi is as-
sumed to occur in free space. The Hamiltonian which describes the
dynamics of this system, in the rotating wave approximation, is gi-
ven by,

H ¼ H0 þ V

H0 ¼ �hx2raa þ �hðx2 �x1Þrbb þ �h
X
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where x1 and x2 are the atomic transition frequencies jai ! jci and
jai ! jbi, respectively, ri,j represent atomic pseudo-spin operators,
while aþk ðakÞ denotes the creation (annihibition) operator for the
kth vacuum mode with frequency xk, and bþk ðbkÞ is the creation
(annihibition) operator for the kth modified reservoir mode with
frequency xk. gac

k ðgab
k Þ denotes the coupling constants between the

kth modified reservoir mode (kth vacuum mode) of the atomic tran-
sition from jaitojci and jbi. Operators H0 and V represent the non-
interaction Hamiltonian and the interaction Hamiltonian, respec-
tively. The resolvent operator [17] is a very convenient tool for
studying the dynamics of system with a well-defined initial state
and a total Hamiltonian independent of time. Setting ⁄ = 1, we apply
the resolvent operator defined as G(z) = 1/(z � H), where z is a com-
plex variable and H is the Hamiltonian of the system given by Eq.
(1). From the definition of the resolvent operator we have
(z � H0)G(z) = 1 + VG(z). As the atom is initially prepared in excited
state ja;0i, the resolvent operator equations read

ðz�xaÞGaa ¼ 1þ
X
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where xa ¼ x2; xbk
¼ x2 �x1 þxk; xck

¼ xk and Vij ¼ hijV jji;
Gij ¼ hijGjji (i, je{a, b, c}). Solving these coupled, algebraic equations,
we get
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The total wavefunction jWðtÞi of the system in the time domain

reads jWðtÞi ¼ UaaðtÞja;0i þ
P

kUbkaðtÞjb;1ki þ
P

kUckaðtÞjc;1ki,
where the amplitudes Uia(t) are obtained by performing the inver-
sion integral for Gij(z)

UijðtÞ ¼
1

2pi

Z �1þie

þ1þie
dze�iztGijðzÞ; ð6Þ

where e is an infinitesimal small positive quantity.

3. Results and discussion

3.1. Time evolution of upper state population

Using the identity 1/(x ± ig) = p(1/x) � ipd(x) (p denoting the
principal values part of the integral) we can get Rij = Dij � iCij/2,
where Dij is level shift operator and Cij is spontaneous emission
rate. Here we neglect the Dij and using the identity Cij(z) = 2p|-
gij|2q(z) derive from Rab and Rac, where the q(z) is the DOS of emit-
ted photon. Because the transition jai ! jbi is coupled to the free
space, we can use the Weiskopf–Wigner approximation to get Rab

= �ic/2, where c represents spontaneous emission rate of a photon
from the excited state to a lower level. However, since the transi-
tion jai ! jci is coupled to the photonic bandgap reservoir, the
Weiskopf–Wigner approximation is no longer valid, however, we
can obtain Rac = � ipcq(z) from Cij(z) = 2p|gij|2q(z) where c repre-
sents the effective coupling of the atomic transition to the reservoir
which is equal to the square of the coupling constants. Substituting
Rab and Rac into Eq. (3), we have Gaa(z) = 1/(z�xa + icpq(z) + ic/2).
The isotropic dispersion relation is a result of two serious approx-
imations. First, the vectorial nature of electromagnetic waves has
been neglected. The second assumption concerns the ‘effective-
mass’ approximation for atomic transitions close to the band edge.
However, in anisotropic model, the vectorial nature of electromag-
netic waves is preserved but the second approximation remains.
The corresponding dispersion relation reads xk �xe + A(k � k0)2,
where xe is the upper band edge frequency and A � x2

e=k2
0 [18].

In the dispersion relation, it is obvious that, as k moves away from
k0, both the direction and magnitude of the band edge wave vector
xk are modified. Using the dispersion relation and
q(x) =

P
kd(x(k) �x), we can get the DOS as

qðzÞ ¼ f ðAÞ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiz�xe
p

hðz�xeÞ, where f(A) is a constant and h is the
Heaviside step function. For the convenience of calculation of time
evolution operator we set f(A) = 1/p, then, the DOS can be written
as qðzÞ ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

z�xe
p

hðz�xeÞ=p. Through change of variable
z ? z + xa, we obtain

GaaðzÞ ¼
1

zþ iðc=2þ c
ffiffiffiffiffiffiffiffiffiffiffiffiffi
zþ d2
p

Þ
: ð7Þ

where d2 = x2 �xe. In order to obtain the |Uaa(t)|2, we should per-
form the inversion integral of Eq. (6). To evaluate the integral, meth-
od applied in Ref. [19] can be used. We close the contour as a
semicircle in the lower half of the complex plane. Since the expres-
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Fig. 1. Three-level atom of a K configuration. The thick dotted line denotes the
coupling to the PCs, and the thick dashed line denotes the background decay.
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