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a b s t r a c t

We analyze the microcavity waveguides and derive the coupling constant based on the coupled mode
theory. The formula contains only two parameters with clear physical meanings, the quality factor of
the cavity modes and the phase shift that the lightwave acquires when tunnelling between two cavities.
It provides an easy way to express and modulate the properties of the waveguides. Our analytical results
are supported by the simulations using the transfer matrix method.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Photonic crystals (PCs) attract much attention due to their flex-
ible control over the flow of light in micro-optical systems [1]. The
PC defects, considered as the optical microcavities, are the focus of
study at all times for their potential applications in building optical
devices [2–6]. It is well known that the coupled PC defects can de-
velop a new kind of waveguides referred to as the coupled cavity
waveguides (CCWs) or the coupled-resonator optical waveguides
(CROWs) [7–12]. These waveguides provide unique properties that
are not available for their traditional counterparts, such as low
group velocity, extremely large group velocity dispersion, etc.
Accordingly, they can be used in building optical delay lines,
optical buffers, dispersion compensators, or pulse compressors
[13–19].

No matter what device function is explored, the coupling
strength between the PC defects in CCWs is most concerned be-
cause the dispersion relation of the waveguides depends on it. In
the framework of tight-binding (TB) approximation, the coupling
strength is embodied by the coupling constant that involves two
overlap integrals reflecting the energy exchanges among the defect
modes [8,10]. In practice, however, it is more convenient to extract
the coupling constant from the experimental or simulation results
[9–12]. For example, by measuring the resonant frequency of the
single-defect mode x0 and the pass bandwidth of the microcavity
waveguide DX, the coupling constant j can be obtained by

j = DX/(2x0) [10]. We know that the coupled mode theory
(CMT) is widely used in the research of the PC defect cavities
[20–27]. It demonstrates high efficiency in describing the trans-
mission property of the structures, just like the scattering formal-
ism does [28,29]. In this paper, we show that CMT is also valid in
describing the dispersion property of the CCWs. We first determine
the transfer matrix of the PC defect and obtain the formula of the
coupling constant using the Bloch’s theorem. Similar derivations
can be found in Refs. [24,29]. Then we discuss how to extract the
phase shift parameter from the lineshape of the double-defect
structures. Finally, numerical simulations are performed to verify
the analytic results.

2. Coupling constant based on CMT

Without losing the physics and for the sake of simplicity, we
choose to study an one-dimensional CCW created in a multilayer
structure. As shown in Fig. 1a, it consists of GaAs (red) and air (light
purple) layers with identical thickness of 0.5a, where a is the lattice
constant. The defects (blue) are introduced by changing the thick-
ness of GaAs layer from 0.5a to d for every nine layers of GaAs. From
the viewpoint of transfer matrix, the CCW can be considered as the
cascade structure of many unit cells. Each cell consists of one single-
defect component and one ‘‘connecting waveguide” component, as
shown in Fig. 1b. Here, the tunnelling of electromagnetic wave from
one PC defect to another is considered equivalently as the propaga-
tion of lightwave along a connected waveguide [24,25]. Such an
approach is simple and proves valid, as will be shown later.
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Consider the single-defect component shown in Fig. 1b, where
s±n and s0�n are the input and output wave amplitudes of the com-
ponent at the left and right sides. If we denote A, x0 and c as the
energy amplitude, the resonant frequency, and the total decay rate
of the defect mode, respectively, then according to CMT, the stable
state of the defect follows [20,22]

jxA ¼ ðjx0 � cÞAþ ffiffifficp sþn þ
ffiffifficp s0þn

s�n ¼ �sþn þ
ffiffifficp A;

s0�n ¼ �s0þn þ
ffiffifficp A

8><
>: ð1Þ

where j is the imaginary unit and x is the input frequency. By elim-
inating the energy amplitude A in Eq. (1), we get the matrix expres-
sion of the component as

s0�n

s0þn

� �
¼ Md

sþn

s�n

� �
¼

1þ jd jd
�jd 1� jd

� �
sþn

s�n

� �
; ð2Þ

where d = (x0 – x)/c is the detuning of input frequency to the
defect resonant frequency in the unit of c, and Md is the transfer
matrix of the single-defect component. The lineshape of the defect
mode is represented by the reciprocal of the square module of
(Md)22. It is a Lorentizian shape. Similarly, under the lossless condi-
tion, the transfer matrix of the equivalent waveguide component in
Fig. 1b, denoted as Mw, can be obtained from

s00�n

s00þn

� �
¼ Mw

s0�n

s0þn

� �
¼ eju 0

0 e�ju

" #
s0�n

s0þn

� �
; ð3Þ

where s00�n are the input and output wave amplitudes of the compo-
nent at its right side, u is the equivalent phase shift acquired by the
lightwave when it propagates along the waveguide component.
Based on Eqs. (2) and (3), the matrix expression of the nth unit cell
is

s00�n

s00þn

� �
¼ MwMd

sþn

s�n

� �
: ð4Þ

As can be seen from Fig. 1b, s00�n and s00þn are also the input and output
wave amplitudes of the (n + 1)th unit cell at its left side, i.e.,
s00�n = s+(n+1) and s00�n = s�( n+1). So, for all the input and output wave
amplitudes of two adjacent units at their left sides, we have

sþðnþ1Þ

s�ðnþ1Þ

� �
¼ MwMd

sþn

s�n

� �
¼ k

sþn

s�n

� �
ð5Þ

The second equality of Eq. (5) is based on the Bloch’s theorem,
which is widely used in literatures [24,29–31]. Because CCWs are
periodic structures with an infinite number of units and here the

interval of s±(n+1) and s±n equals one period, the difference of
s±(n+1) and s±n is only a Bloch’s phase factor. It means that k equals
ejbK or e�jbK with b the Bloch wave vector and K the periodic length
(K = 9a for the CCW studied). If a nontrivial solution of Eq. (5) ex-
ists, the corresponding determinant jMwMd � kIj must be zero,
where I is the unit matrix. It leads to the equation of

cosðbKÞ ¼ cos uþ d sinu; ð6aÞ

which is the dispersion relation of the CCW. Consider that d = (x0 –
x)/c, we can rewrite Eq. (6a) as

x ¼ x0 1þ cot u
2Q

� �
� x0

2Q sin u
cos bK; ð6bÞ

where Q = x0/(2c) = x0/Dx is the quality factor of the defect mode,
Dx is the linewidth of the defect mode. Obviously, the dispersion
relation has got the same form as that of the TB approach. Based
on Eq. (6b), the pass bandwidth of CCW DX, the group velocity
vg, and the coupling factor j, can be derived as

DX ¼ x0

Q sin u
; ð7Þ

mg ¼
x0K

2Q sin u
sin bK; ð8Þ

j ¼ 1
2Q sin u

; ð9Þ

respectively. Apparently, u plays an important role in describing the
properties of CCWs. In particular, as shown in Eq. (9), Q is not the
unique parameter to determine the coupling factor, which is often
misunderstood by some people. Even when Q is constant, i.e., the
given defect modes, we can still modulated the properties of CCWs
if the way of changing u is discovered. This is very useful in the
design of microcavity waveguides.

Now the problem is how to acquire the value of u. We are sure
that u hides its message in the lineshape of the structure that con-
tains at least two PC defects, because different u usually results in
different lineshape, flat top or not [24,25]. Consider the dashed box
shown in Fig. 1a that consists of two single-defect components
being connected by one equivalent waveguide component, its
transfer matrix M2d = MdMwMd. The lineshape T2d can be obtained
by using the matrix element (M2d)22

T2d ¼
1

jðM2dÞ22j
2 ¼

1

1þ 4d2ðd sinuþ cos uÞ2
: ð10Þ

Obviously, T2d possesses two peaks of unity located at d = 0 and
d = �cot u, and one valley of 4 sin2 u/(4 sin2 u + cos4 u) located at
d = �0.5 cot u. So we can extract u readily by measuring one of
the following values: the valley location, the valley transmittance,
or the second peak location. From Eq. (10) we also find that if u
happens to be p/2 the lineshape possesses only one peak at d = 0.

3. Comparison and discussion

To verify the above analysis, we perform simulations using a
TMM software developed by Reynolds. Its computational frame-
work was established by Pendry and MacKinnon [32,33]. In
TMM, the investigated structure is divided into small cells. In each
cell, Maxwell’s equations are solved in the way of transfer matrix,
in one frequency. The cascade product of all these transfer matrices
results in the transfer matrix of the whole structure, from which
the stable transmission can be obtained. This is an accurate solu-
tion of Maxwell’s equations without any assumptions. So we can
use it to test the CMT results. Of course, if one investigates the
dynamical properties of the structure, it is better to use the FDTD
scheme that solves Maxwell’s equations in the temporal and
spatial domains. For the one-dimensional PC constructed by GaAs

Fig. 1. Schematic of the CCW where the red, blue, and light purple parts represent
the normal GaAs, the defect GaAs, and the air layers, respectively. (a) Two adjacent
PC defects in the CCW are dashed to indicate the simplest coupled-defect structure.
(b) Input and output wave amplitudes of an unit cell (dashed box) in the CCW.

3082 X.-S. Lin, J.-H. Yan / Optics Communications 282 (2009) 3081–3084



Download English Version:

https://daneshyari.com/en/article/1539446

Download Persian Version:

https://daneshyari.com/article/1539446

Daneshyari.com

https://daneshyari.com/en/article/1539446
https://daneshyari.com/article/1539446
https://daneshyari.com

