
Self-focusing and defocusing of TEM0p Hermite–Gaussian laser beams
in collisionless plasma

M.V. Takale, S.T. Navare, S.D. Patil *, V.J. Fulari, M.B. Dongare
Division of Nonlinear Optics and Holography Laboratory, Department of Physics, Shivaji University, Kolhapur 416 004 (M.S.), India

a r t i c l e i n f o

Article history:
Received 21 January 2009
Received in revised form 20 April 2009
Accepted 20 April 2009

Keywords:
Hermite–Gaussian beams
Collisionless plasma
Parabolic wave equation
Self-focusing/defocusing

a b s t r a c t

The authors have investigated the self-focusing and defocusing of first six TEM0p Hermite–Gaussian laser
beams in collisionless plasma. In case of collisionless plasma the nonlinearity in the dielectric constant is
mainly due to the ponderomotive force. It is found that modes with odd p-values defocuses and that with
even p-values exhibit oscillatory as well as defocusing character of beam-width parameters variation
during their propagation in collisionless plasma. The entire theoretical formulation is established under
parabolic wave equation approach. The numerical computation is completed by using fourth order Run-
ge–Kutta method. Finally the behavior of beam-width parameters with the dimensionless distance of
propagation is presented graphically.
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1. Introduction

Study of the phenomena related to self-focusing of intense laser
light propagating in a plasma has become a subject of considerable
interest, since these phenomena play an important role in a large
amount of high power laser applications, such as X-ray lasers [1],
harmonic generation [2,3], laser-driven plasma accelerators [4–
9], and fast igniter concept of inertial confinement fusion [10].
For these applications, preformed plasma channels are required
to further guide the laser beam beyond the Rayleigh length, after
which the beam expands infinitely in vacuum due to natural dif-
fraction. It has been shown that the beam spot size performs peri-
odic oscillations along the propagation distance in the presence of
preformed channel and has equilibrium solution (i.e. constant spot
size) when the laser power is equal to the matched powers with
different nonlinear effects [5,11–14]. Gupta et al. [15] have ob-
served a plasma density ramp of a suitable length can reduce these
oscillations. Furthermore, they have also predicted a magnetic field
acts as a catalyst for self-focusing of a laser beam during propaga-
tion in a plasma density ramp [16].

When an intense laser beam acts on collisionless plasma, the
quiver velocity of electrons is relativistic so that their mass is
intensity dependant but for long pulse experiments, the relativistic
effects can be ignored [17] and ponderomotive force of the beam
nonlinearity perturbs electron density resulting in the excitation
of electron plasma wave (wakefield) [18]. Recently, Hermite–
Gaussian beams have attracted the researchers as a useful optical

trap wherein the central trap-depth depends on waist-size of the
beam [19]. It is also noticed that frequency of optical trap increases
for smaller waist-size and larger power of the beam. Since waist-
size is finally related to beam-width parameters, studies on
beam-width parameter variation have added flavor in the subject
of high power laser beams. In this paper, we present the propaga-
tion of first six TEM0p Hermite–Gaussian laser beams in collision-
less plasma by a ponderomotive mechanism. In addition to
adopting a different intensity profile, we have studied the higher
order Hermite–Gaussian modes and manipulate numerically by
using fourth order Runge–Kutta method in this paper instead of
analytical treatment exposed for cylindrically symmetric beams
by Patil et al. [20,21]. We have also employed two different trans-
verse beam-width parameters in Cartesian coordinate system and
assumed the medium to be non-absorptive and aberrationless.

In Section 2, the field distribution of TEM0p Hermite–Gaussian
beams propagating along z-axis and nonlinear dielectric constant
for collisionless plasma are presented. In Section 3, we have set
up and derived the differential equations for beam-width parame-
ters by parabolic wave equation approach under Wentzel–Kra-
mers–Brillouin (WKB) and paraxial approximations. Section 4 is
devoted to the discussion of important results, supported by
numerical analysis. Finally, a brief conclusion is added in Section 5.

2. Theoretical considerations

2.1. Field distribution of Hermite–Gaussian beams

We employ the Hermite–Gaussian laser beam propagating
along z-axis with the field distribution in the following form
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where Hj(�) denotes the jth order Hermite polynomial; (j = 0, p) with
p = 0, 1, 2, 3, 4, 5. r0 is the spot size of the beam, E0 is the amplitude
of Gaussian beam for the central position at r = z = 0, is a constant,
f1(z) and f2(z) are the dimensionless beam-width parameters in x
and y directions.

2.2. Nonlinear dielectric constant

Further we consider such propagation in a nonlinear medium
characterized by dielectric constant of the form [22]
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where e0 and U represents the linear and nonlinear parts of the
dielectric constant respectively, xp is the plasma frequency.

In case of collisionless plasma, the nonlinearity in the dielectric
constant is mainly due to the ponderomotive force and the nonlin-
ear part of dielectric constant is given by [23]
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with
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where e, m and n0 being the electronic charge, mass and the elec-
tron density, M is the mass of scatterer in the plasma, x is the fre-
quency of laser used, kB is the Boltzmann’s constant and T0 is the
equilibrium plasma temperature.

3. Self-focusing and de-focusing

The wave equation governing the propagation of the laser beam
may be written as,
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The last term on left hand side of Eq. (4) can be neglected provided
that k-2r2(ln e)� 1 where, k represents the wave vector. This
inequality is satisfied in almost all cases of practical interest. Thus

r2Eþx2

c2 eE ¼ 0 ð5Þ

This equation is solved by employing Wentzel–Kramers–Brillouin
(WKB) approximation. For convenience, we express the solution
in the Cartesian coordinate system as

E ¼ Aðx; y; zÞ exp½iðxt � kzÞ�; ð6aÞ

where

k ¼ x
c
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and A(x, y, z) is the complex amplitude of the electric field.

Substituting for E(x, y, z) from Eq. (6) in Eq. (5) and neglecting
o2A/oz2 which implies that the characteristic distance of intensity
variation is much greater than wavelength, one obtains
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To solve Eq. (7), we express A(x, y, z) as

Aðx; y; zÞ ¼ A0pðx; y; zÞ exp½�ikSðx; y; zÞ�; ð8Þ

where A0p and S are real functions of x, y and z. Substituting for
A(x, y, z) from Eq. (8) in Eq. (7) and equating the real and imaginary
parts on both sides of the resulting equation, one obtains
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Following Akhmanov et al. [24] and its extension by Sodha et al.
[22,25], the solutions of Eqs. (9) and (10) for TEM0p Hermite–Gauss-
ian beams can be written as
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It is obvious that the parameter b1(z) and b2(z) represents the cur-
vature of the wavefront in x and y directions.

Employing paraxial approximation to obtain expressions for the
beam-width parameters f1 and f2 as
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with
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where Rd is the diffraction length and g is the dimensionless dis-
tance of propagation.

Establishing the general relation between the numerical coeffi-
cient in the second term of Eqs. (12) and (13) and the mode index
p = 0, 2, 4, the general beam-width parameter differential equa-
tions for even modes are as below:
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