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a b s t r a c t

A scheme of multiparty quantum secret sharing of classical messages (QSSCM) is proposed based on sin-
gle photons and local unitary operations. In this scheme, eavesdropping checks are performed only twice,
and one photon can generate one bit of classical secret message except those chosen for eavesdropping
check; in addition, only the sender and one of the agents are required to store photons. Thus, this scheme
is more practical and efficient.

� 2008 Elsevier B.V. All rights reserved.

1. Introduction

The principles of quantum mechanics supplied many interest-
ing applications in the field of quantum information in the last
decade. Quantum secret sharing (QSS) is an important branch of
quantum information, which allows a secret to be shared among
many participants in such a way that only the authorized groups
can reconstruct it [1]. QSS is an useful tool in the cryptographic
applications and it is likely to play a key role in protecting secret
quantum information, e.g., in secure operations of distributed
quantum computation, sharing difficult-to-construct ancilla states
and joint sharing of quantum money, and so on [2]. Classical secret
sharing schemes are designed based on certain unproven computa-
tional assumptions such as the infeasibility of factoring large inte-
gers and solving discrete logarithm. Unfortunately, quantum
algorithms are capable of factoring large integers and solving dis-
crete logarithm [3]. Fortunately, in contrast to classical secret shar-
ing, the security of QSS relies on quantum-mechanical law rather
than on computational complexity, so QSS is secure even if the

attackers have unlimited computational resources; in addition,
the information splitting of a secret and the information distribu-
tion in QSS is realized by local measurements and unitary
operations on distributed quantum states, so QSS allows to distrib-
ute the shares securely in the presence of eavesdropping; more-
over, QSS can supplies a secure way for sharing not only a
classical message (i.e., bit) but also a quantum state. Therefore,
since Hillery et al. first proposed a QSS scheme using Greenber-
ger-Horne-Zeilinger states in 1999 [4], a lot of QSS schemes
[1,2,5–21] have been proposed in both theoretical and experimen-
tal aspects. All these schemes [1,2,4–21] can be divided into two
kinds, one only deals with the QSSCM [1,5,9–12,14,16–21], or only
deals with the QSS of quantum information [2,6–8,13,15] where
the secret is an arbitrary quantum state, and the other studies both
[4], that is, deals with QSS of classical messages and QSS of a quan-
tum state simultaneously. In all these schemes [1,2,4–21] dealing
with the QSS, entangled states are used.

In fact, entanglement is necessary in QSS of quantum states, but
it is not necessary in QSSCM, and single photons are ideal source for
quantum communication, compared with those QSSCM schemes
using entangled state, the QSSCM schemes without entanglement
are more practical within the present technology, so Guo and Guo
first proposed a QSSCM scheme with multi-particle product states
in Ref. [22] and then Deng et al. presented a scheme for bidirec-
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tional quantum secret sharing and secret splitting with polarized
single photons in Ref. [23]. These two QSSCM schemes are secure,
but eavesdropping check need to be performed between the sender
and any agent, and n photons can generate only one bit of classical
secret in Refs. [22,23], here n is the number of the agents. Thus,
when n is large, many photons would be wasted in these two
QSSCM schemes. Yan and Gao proposed a scheme for quantum se-
cret sharing between multiparty and multiparty without entangle-
ment in Ref. [24] and Schmid et al. gave an experimental single
qubit quantum secret sharing in Ref. [25], but the Refs. [26–28]
have shown these two QSSCM schemes do not reach the security le-
vel of QSSCM. Based on the quantum secure direct communication
(QSDC) protocols [29,30], Zhang et al. also proposed a multiparty
QSSCM scheme using single photons in Ref. [31]. In the scheme,
some special unitary operations (e.g., four Pauli operations) are
used to realize the sharing controls. Unfortunately, the scheme is
vulnerable to some attacks [32–34]. In order to overcome the flaws
in Ref. [31], Han et al. use random phase shift operations instead of
some special discrete unitary operations to realize the sharing con-
trols and gave an improvement QSSCM scheme [35]. However, with
the development of quantum cryptanalysis, Qin et al. [36] proposed
a new attack with quantum teleportation, and any dishonest agent
can recover the sender’s secret message and introduce no error with
this teleportation attack in Han et al.’s scheme.

Therefore, how to design a practical, secure and efficient multi-
party QSSCM scheme based on single photons is a urgent and sig-
nificance problem to be solved. In this paper, we propose a new
multiparty QSSCM scheme using single photons and local unitary
operations. In this scheme, only two eavesdropping checks are re-
quired, and one photon can generate one bit of classical secret
message except those chosen for eavesdropping check; in addition,
only the sender and one of the agents need to store photons. Thus,
this scheme is more practical and efficient. Most important of all,
this scheme can resist all the attacks in Refs. [26–28,32–34,36].

Now let us turn to our multiparty QSSCM scheme. For conve-
nience, let us first describe a four-party QSSCM scheme in detail.
Suppose Alice wants to send a secret message to three agents,
Bob, Charlie and Dick. However, Alice requires the three agents
can infer the secret messages only by their mutual assistance. This
four-party QSSCM scheme includes the following five steps.

(1) Firstly, according to the bit length of her secret message,
Alice prepares the product state of single photons �N

i¼1j0ii,
here N is the bit length of Alice’s secret message and j0i,
j1i denote the horizontal and vertical polarization modes
of photons hereafter, respectively. Then, she prepares K sam-
ple photons �K

j¼1jSji to detect eavesdropping in the following
step (3), here jSji2 fj0i, j1i, jþi, j�igðj ¼ 1;2; . . . ;KÞ and
jþi ¼ ðj0i þ j1iÞ=

ffiffiffi

2
p

, j�i ¼ ðj0i � j1iÞ=
ffiffiffi

2
p

. Finally, she inserts
randomly the K sample photons �K

j¼1jSji into the N single
photons �N

i¼1j0ii and sends all the photons to Bob. Note that
any one does not know the initial states and positions of the
K sample photons �K

j¼1jSji except Alice.
(2) When Bob receives the photons �N

i¼1j0ii and �K
j¼1jSji, on each

photon, Bob chooses a local unitary operation from I, rx, iry,
rz and H with probability 12.5%, 12.5%, 12.5%, 12.5% and
50%, respectively, and performs this unitary operation on
it. Here I ¼ ðj0ih0j þ j1ih1jÞ, rx ¼ ðj1ih0j þ j0ih1jÞ, iry ¼ ðj0i
h1j � j1ih0jÞ, rz ¼ ðj0ih0j � j1ih1jÞ, H ¼ ðj0ih0j þ j1ih0j þ j0i
h1j � j1ih1jÞ=

ffiffiffi

2
p

. Suppose after Bob’s encryption, the photons
�N

i¼1j0ii and �K
j¼1jSji evolve to �N

i¼1UBi
j0ii, �K

j¼1UBj
jSji, respec-

tively, where UBi
and UBj

denote the local unitary operations
that Bob chooses randomly. Then Bob sends the photons
�N

i¼1UBi
j0ii and �K

j¼1UBj
jSji to Charlie. Charlie does the same

procedures as Bob, then he sends the encrypted photons
�N

i¼1UCi
UBi
j0ii and �K

j¼1UCj
UBj
jSji to Dick, where UCi

and UCj

denote the local unitary operations that Charlie chooses ran-
domly. Dick also does the same procedures as Bob, then he
sends the encrypted photons �N

i¼1UDi
UCi

UBi
j0ii and

�K
j¼1UDj

UCj
UBj
jSji back to Alice, where UDi

and UDj
denote

the local unitary operations that Charlie chooses randomly.
(3) After receiving the photons �N

i¼1UDi
UCi

UBi
j0ii and

�K
j¼1UDj

UCj
UBj
jSji, Alice measures every sample photon

UDj
UCj

UBj
jSji ðj ¼ 1;2; . . . ;KÞ with X-basis or Z-basis ran-

domly, here Z ¼ fj0i; j1ig and X ¼ fjþi; j�ig. Then, Alice
publics the positions of all sample photons
�K

j¼1UDj
UCj

UBj
jSji, but she keep their measurement outcomes

and initial states secret. In the following, Alice lets the three
agents tell her their exact unitary operations UBj

,UCj
and UDj

ðj ¼ 1;2; . . . ;KÞ. After that, Alice can determine the error rate
according to these K sample photons’ initial state �K

j¼1jSji,
measurement outcomes (Note that there is 50% probability
that Alice will choose the wrong measurement basis, so half
of the measurement outcomes are useless.) and UBj

,UCj
,UDj

ðj ¼ 1;2; . . . ;KÞ. If the error rate exceeds the threshold, then
the communication is aborted. Otherwise, Alice encodes her
secret bits by performing a unitary operation UAi

on the pho-
ton UDi

UCi
UBi
j0ii ði ¼ 1;2; . . . ;NÞ, where UAi

2 fI; iryg and I
(iry) correspond to the classical bit 0(1). After her encoding,
similarly does as the step (1), Alice also prepares K 0 sample
photons �K 0

k¼1jS
0
ki and inserts randomly them into the

encoded photons �N
i¼1UAi

UDi
UCi

UBi
j0ii. Then she sends the

photons�K 0
k¼1jS

0
ki and �N

i¼1UAi
UDi

UCi
UBi
j0ii to one of the

agents, for example, Bob.
(4) After confirming that Bob has received the photons
�N

i¼1UAi
UDi

UCi
UBi
j0ii and �K 0

k¼1jS
0
ki, Alice tells him the posi-

tions and initial states of these K 0 sample photons �K 0
k¼1jS

0
ki.

Then, Bob measures these K 0 sample photons with proper
measurement basis according to Alice’s announcement.
After these, they can check whether the encoded photons
�N

i¼1UAi
UDi

UCi
UBi
j0ii have been attacked. If they are attacked,

the eavesdropper Eve cannot get access to any useful infor-
mation but interrupts the transmissions. Otherwise, Bob
stores the encoded photons �N

i¼1UAi
UDi

UCi
UBi
j0ii and this

four-party QSSCM is successfully accomplished.
(5) When Bob, Charlie and Dick approve to recover Alice’s secret

message, Charlie and Dick tell Bob their exact unitary oper-
ations UCi

,UDi
ði ¼ 1;2; . . . ;NÞ. If the number of H in the three

unitary operations UBi
,UCi

,UDi
is odd, Bob performs X-basis

measurement on the encoded photon UAi
UDi

UCi
UBi
j0ii;

otherwise, he performs Z-basis measurement. Thus, they
can deduce Alice’s unitary operation UAi

on each encoded
photon UAi

UDi
UCi

UBi
j0ii by their unitary operations

UBi
,UCi

,UDi
and Bob’s measurement outcome, and recover

Alice’s secret message. For example, suppose UBi
¼ rx,

UCi
¼ rZ and UDi

¼ H, so Bob knows he should measure the
encoded photon UAi

UDi
UCi

UBi
j0ii with X-basis, and if Bob’s

measurement outcome is j þ ii, the state of the photon j0ii
evolves as follows:

j0ii ) UBi
j0ii ¼ j1ii ) UCi

j1ii ¼ j1ii ) UDi
j1ii

¼ j � ii ) UAi
j � ii ) j þ ii:

Thus, they can deduce easily UAi
¼ iry and recover the secret bit

1. Otherwise, if Bob’s measurement outcome is j � ii, they can de-
duce UAi

¼ I and recover the secret bit 0.
So far we have proposed a four-party QSSCM scheme using sin-

gle photons and local unitary operations. In fact, it is a (3;3)
threshold QSSCM scheme. Now let us discuss the security of this
four-party QSSCM scheme. As we know, the security of QSS is more
complex than quantum key distribute and QSDC because not all of
the legitimate agents in QSS schemes are credible, that is, some of
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