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a b s t r a c t

We present a tripartite quantum information splitting scheme which splits a qutrit state via two GHZ
states. The scheme is then generalized to splitting a qudit state among any number of receivers. We show
that this scheme is also applicable to splitting any multi-qudit entangled states.
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1. Introduction

Quantum information splitting (QIS) is one of the most striking
applications of quantum entanglement. It is the counterpart of
classical secret sharing [1,2] in the complete quantum scenario
and was initially introduced by Hillery, Bŭzek and Berthiaume
(HBB) in 1999 [3]. HBB’s QIS scheme can be briefly described as fol-
lows: a splitter (named Alice) and two receivers (respectively
named Bob and Charlie) safely share a 3-qubit GHZ state as quan-
tum channel and each one possesses a qubit. Alice also has another
qubit in an arbitrary state. To partition the arbitrary quantum state
between Bob and Charlie, Alice carries out a Bell-state measure-
ment on her two qubits and publishes her measurement result
via a classical channel. By using this method neither Bob nor
Charlie is able to solely obtain the secret quantum state unless they
collaborate together. QIS has many potential applications, e.g.,
secure operations of distributed quantum computation [4], sharing
difficult-to-construct ancilla states, joint sharing of quantum
money [5], and so on. Consequently, it has attracted much atten-
tion after HBB’s pioneering work and many QIS schemes have
already been proposed over the past decade [6–22].

By far all the problems treated in QIS [3,6–19], we think, can be
simply classified into six types, i.e., the participant number, the

split quantum information, the employed quantum channel, the
necessary operation, the classical communication cost and their
tradeoff. Among these six types of issues, the split quantum infor-
mation and the employed quantum channel as two indispensable
parts in QIS, are essentially quantum states. Intuitively, any quan-
tum state should inhabit a particle or particles. Conventionally, the
particle which is initially inhabited the quantum information par-
tially or fully is called as information particle, while the particles
consisting of the quantum channel are called as channel particles.
Through extensive investigations we find that, so far in all existing
QIS schemes [3,6–19] the degree of freedom of single information
particle is equal to that of single channel particle. As a matter of
fact, recently people have already started to consider in other
quantum information processes [23–26] the so-called degree-mis-
match problem, where the degree of freedom of single information
particle is different from that of single channel particle. Nonethe-
less, to our best knowledge, no QIS work is devoted to such de-
gree-mismatch issue. However, in the future quantum network,
different entangled states may be used as quantum channels and
different quantum states may be needed to be split among sharers.
Hence it is quite possible that one may encounter the degree-mis-
match issue in QIS. Surely, it is of interest and significance to treat
such problem in QIS.

In this paper, we will only preliminarily study the degree-
inequality problem in QIS. In Section 2, we will detailedly intro-
duce a tripartite scheme for splitting an unknown single-qutrit
state by using two 3-qubit GHZ states as the quantum channel.
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In Section 3, we will extend the scheme from the qutrit case to a
higher-dimensional (i.e., qudit) case. In Section 4, we will expand
the tripartite scheme to a more-partite one. We will give a concise
summary and make some brief remarks and proposals in Section 5.

2. Tripartite scheme for splitting a qutrit state via two GHZ
states

Instead of proceeding direct to the most general scenario, it is
instructive to first consider in details a simpler situation, namely,
a tripartite QIS scheme for splitting a single-qutrit state with two
GHZ states. The schematic demonstration of the tripartite scheme
is shown in Fig. 1. Let the three legitimate parties in the scheme be
Alice (sender) and Bob and Charlie (receivers). Alice has a secret
qutrit state given by

jwit ¼ n0j0it þ n1j1it þ n2j2it; ð1Þ

where jn0j2 þ jn1j2 þ jn2j2 ¼ 1. The quantum channel linking the
three parties consists of two 3-qubit GHZ states

j/ia0b0c0
¼ 1ffiffiffi

2
p ðj000i þ j111iÞa0b0c0

;

j/ia1b1c1
¼ 1ffiffiffi

2
p ðj000i þ j111iÞa1b1c1

: ð2Þ

Alice, Bob, and Charlie hold the qubit pairs ða0; a1Þ; ðb0; b1Þ, and
ðc0; c1Þ, respectively.

Alice wants to split the qutrit state jwit between Bob and Charlie
so that neither of them can solely reconstruct the secret state unless
they cooperate with each other. To proceed, Alice performs a joint
measurement on her three particles ðta1a0Þ and publishes her out-
come. The measurement basis consists of the following states,

jB1ita1a0
¼ 1ffiffi

3
p ðj000i þ j101i þ j210iÞta1a0

;

jB2ita1a0
¼ 1ffiffi

3
p ðj001i þ j110i þ j211iÞta1a0

;

jB3ita1a0
¼ 1ffiffi

3
p ðj010i þ j111i þ j200iÞta1a0

;

jB4ita1a0
¼ 1ffiffi

3
p ðj011i þ j100i þ j201iÞta1a0

;

jB5ita1a0
¼ 1ffiffi

3
p ðj000i þ e

2pi
3 j101i þ e

4pi
3 j210iÞta1a0

;

jB6ita1a0
¼ 1ffiffi

3
p ðj001i þ e

2pi
3 j110i þ e

4pi
3 j211iÞta1a0

;

jB7ita1a0
¼ 1ffiffi

3
p ðj010i þ e

2pi
3 j111i þ e

4pi
3 j200iÞta1a0

;

jB8ita1a0
¼ 1ffiffi

3
p ðj011i þ e

2pi
3 j100i þ e

4pi
3 j201iÞta1a0

;

jB9ita1a0
¼ 1ffiffi

3
p ðj000i þ e

4pi
3 j101i þ e

2pi
3 j210iÞta1a0

;

jB10ita1a0
¼ 1ffiffi

3
p ðj001i þ e

4pi
3 j110i þ e

2pi
3 j211iÞta1a0

;

jB11ita1a0
¼ 1ffiffi

3
p ðj010i þ e

4pi
3 j111i þ e

2pi
3 j200iÞta1a0

;

jB12ita1a0
¼ 1ffiffi

3
p ðj011i þ e

4pi
3 j100i þ e

2pi
3 j201iÞta1a0

:

9>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>;

ð3Þ

In terms of the basis states Bj, the combined state of the qutrit t and
the quantum channel particles can be rewritten as

jWita0b0 c0 a1b1c1
¼ jwit�j/ia0b0 c0

�j/ia1b1c1

¼ 1
2
ffiffiffi
3
p
�
jB1ita1a0

ðn0j0000iþn1j0101iþn2j1010iÞb1b0c1c0
:

þjB2ita1a0
ðn0j0101iþn1j1010iþn2j1111iÞb1b0c1c0

þjB3ita1a0
ðn0j1010iþn1j1111iþn2j0000iÞb1b0 c1c0

þjB4ita1a0
ðn0j1111iþn1j0000iþn2j0101iÞb1b0 c1c0

þjB5ita1a0
n0j0000iþn1e�

2pi
3 j0101iþn2e�

4pi
3 j1010i

� �
b1b0 c1c0

þjB6ita1a0
n0j0101iþn1e�

2pi
3 j1010iþn2e�

4pi
3 j1111i

� �
b1b0c1c0

þjB7ita1a0
n0j1010iþn1e�

2pi
3 j1111iþn2e�

4pi
3 j0000i

� �
b1b0c1c0

þjB8ita1a0
n0j1111iþn1e�

2pi
3 j0000iþn2e�

4pi
3 j0101i

� �
b1b0c1c0

þjB9ita1a0
n0j0000iþn1e�

4pi
3 j0101iþn2e�

2pi
3 j1010i

� �
b1b0 c1c0

þjB10ita1a0
n0j0101iþn1e�

4pi
3 j1010iþn2e�

2pi
3 j1111i

� �
b1b0c1c0

þjB11ita1a0
n0j1010iþn1e�

4pi
3 j1111iþn2e�

2pi
3 j0000i

� �
b1b0c1c0

þjB12ita1a0
n0j1111iþn1e�

4pi
3 j0000iþn2e�

2pi
3 j0101i

� �
b1b0c1c0

�
:

ð4Þ

This expression shows that, measuring the three particles ðta1a0Þ in
the basis given in Eq. (3), Alice gets any one of the 12 possible re-
sults with equal probabilities. Suppose, for example, Alice obtains
jB12ita1a0

, then Bob’s and Charlie’s qubits collapse to the following
state,

ju12ib1b0c1c0
¼ n0j1111i þ n1e�

4pi
3 j0000i þ n2e�

2pi
3 j0101i

� �
b1b0c1c0

:

ð5Þ

It is clear that, after Alice’s measurement the coefficients of the se-
cret qutrit state are transferred to those of the four-qubit state in
the receivers’ hands, so that, if they collaborate with each other,
either Bob or Charlie can retrieve the original qutrit information.
One can easily see from Eq. (5) that ðb0b1Þ and ðc0c1Þ are completely
symmetrical, so that Alice can choose either Bob or Charlie to be the
final receiver of the secret information. Without loss of generality we
may assume Bob to be the one. In this case, Charlie must measure
each of his qubits c0 and c1 in the X basis. Let us rewrite the Eq. (5) as

ju12ib1b0c1c0
¼ 1

2
ðj þ ic1

j þ ic0
þ j þ ic1

j � ic0
rz

b0
þ j � ic1

j

þ ic0
rz

b1
þ j � ic1

j � ic0
rz

b1
rz

b0
Þjw12ib1b0

; ð6Þ

where j�i¼ 1ffiffi
2
p ðj0i�j1i;rz¼ðj0ih0j�j1ih1Þ, and jw12ib1b0

¼ðn0je012iþ

n1je112iþn2je212iÞb1b0
with je012i�j11i;je112i�e�

4pi
3 j00i and je212i�e�

2pi
3

j01i. Therefore, knowing Charlie’s measurement results, Bob can
effectively recover the qutrit state in the form of a two-qubit state
jw12ib1b0

by preforming appropriate single-qubit Pauli operations as
indicated in Eq. (6). It should be emphasizes that the original qutrit
information is now encoded in a three-dimensional subspace of the
four-dimensional Hilbert space of the two qubits ðb1b0Þ in Bob’s
hand. Note that, with Alice’s measurement result, Bob already has
amplitude information of the qutrit state but not the phase infor-
mation, which is supplied by Charlie’s measurement results.

Similarly, if Alice gets any other results, Bob can also effectively
recover the qutrit state with Charlie’s help. The corresponding pro-
cedures can be easily read off from the following expression,

Fig. 1. Tripartite scheme for splitting a qutrit state with two 3-qubit GHZ states.
Hollow (solid) circles represent qutrits (qubits). Solid lines indicate entanglement.
Solid and dashed ellipses denote respectively a collective measurement and an
unitary operation on the enclosed particles. Small squares denote single-qubit
measurements. Arrows indicate the flow of classical information. See the text for
more details.
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