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a b s t r a c t

Two schemes are proposed for generating atomic qubits cluster states in cavity quantum electrodynamics
(QED). In the first scheme, only two-atom–cavity interactions are involved, and cluster states can be
directly generated by using constructed two-qubit controlled phase gates. The second scheme needs
the assistance of additional single-qubit rotations, but takes less time than the first one for two-atom
operations in the cavity. In this scheme, two projective operators are constructed to prepare two-dimen-
sion or more complicated configurations of cluster states. Both schemes are insensitive to the cavity
decay due to the fact that the cavity is only virtually excited during the interaction between atoms
and the cavity. The idea can also be applied to the ion trap system.

� 2008 Elsevier B.V. All rights reserved.

Entanglement between quantum-mechanical particles is the
most intriguing characteristic of quantum mechanics. Entangled
states not only provide possibilities to test quantum mechanics
against local hidden-variable theory, but also are the center re-
source for quantum information processing [1]. Bipartite entangle-
ment is well understood. Tripartite entangled states can be
classified into two inequivalent classes, the Greenberger–Horne–
Zeilinger (GHZ) class [2] and the W class [3], under stochastic local
operations and classical communication. While entanglement for
more particles is still under extensive exploration. Recently, Briegel
and Raussendorf introduced a interesting type of multi-qubit
entangled states, i.e., the so-called cluster states [4]. This kind of
states have high persistence of entanglement, and can be regarded
as an entanglement resource for the GHZ states but are more im-
mune to decoherence than them [5]. It has been shown that a
new inequality is maximally violated by the four-particle cluster
states, but not the four-particle GHZ states [6]. The cluster states
have extensive applications in quantum physics. They can be used
to test nonlocality without inequalities [6], and more importantly,
constitute a universal resource for one-way quantum computation
[7] and implement quantum communication [8].

The preparation of cluster states has attracted much attention
because of its unique features and extensive applications. And

some schemes have been proposed in linear optics system [9],
atomic ensembles [10], and other kinds of systems [11,12]. There
are also some experimental reports on the observation of cluster
states [13,14] and demonstration of the one-way quantum compu-
tation [14,15].

On the other hand, the microwave cavity QED, with Rydberg
atoms crossing superconducting cavities, provides an almost ideal
system for the realization of quantum information processing
[16]. Lately, two schemes for generating cluster states with reso-
nant interaction between atoms and cavities were proposed in
Refs. [10,17]. In this paper, we propose two schemes for preparation
of multi-atom cluster states. In the first scheme, only two-atom–
cavity interactions are involved under the condition of large detun-
ing between the atoms and the cavity, and cluster states can be di-
rectly generated by using constructed two-qubit controlled phase
gates. The second scheme works with the assistance of additional
single-qubit rotations, but it can save the two-atom operations
time. In this scheme, two projective operators are constructed to
prepare two-dimension or more complicated configurations of
cluster states. Both schemes are insensitive to cavity decay due to
the fact that they only involve atom-field interaction with large
detuning and do not require the transfer of quantum information
between the atoms and the cavity. All the facilities used in our
schemes are well within state of the art.

We now consider two identical ladder-type three-level Rydberg
atoms simultaneously interacting with a cavity field. The three
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levels of each atom are denoted by jf i; jgi and jei, and they corre-
spond to the principal quantum numbers 49, 50 and 51, respec-
tively. The jei $ jgi and jf i $ jgi transitions are at 51.1 and
54.3 GHz, respectively. Thus, we can choose the frequency of the
cavity mode in a way that only the levels jei and jgi are appropri-
ately affected by the cavity field. The transition frequency between
the states jgi and jf i is highly detuned from the cavity frequency
and thus the state jf i is not affected during the atom–cavity inter-
action. Under the rotating-wave approximation, the Hamiltonian
in the interaction picture is (let �h ¼ 1)

HI ¼ g
X
j¼1;2

e�idtaþr�j þ eidtarþj
� �

; ð1Þ

where r�j ¼ jgjihejj and rþj ¼ jejihgjj, aþ and a are, respectively, the
creation and annihilation operators for the cavity mode, g is the
atom–cavity coupling strength, and d is the detuning between the
atomic transition frequency x0 and cavity frequency x. In the case
d� g, there is no energy exchange between the atomic system and
the cavity. The energy-conversing transition is between je1g2ni and
jg1e2ni. The Rabi frequency X for the transition between them, med-
iated by jg1g2nþ 1i and je1e2n� 1i, is given by [18]

X ¼he1g2njHIjg1g2nþ 1ihg1g2nþ 1jHIjg1e2ni
d

þ he1g2njHIje1e2n� 1ihe1e2n� 1jHIjg1e2ni
�d

¼ g2

d
: ð2Þ

Since the two transition paths interfere destructively, the Rabi fre-
quency is independent of photon-number of the cavity mode. Then
the effective Hamiltonian can be written as [19]

H0E ¼ X
X2

j¼1

ðjejihejjaaþ � jgjihgjjaþaÞ þX rþ1 r�2 þ r�1 rþ2
� �

: ð3Þ

The first and second terms describe the photon-number dependent
Stark shifts, and the third and fourth terms describe the dipole cou-
pling between the two atoms induced by the cavity mode. Assum-
ing the cavity field is initially in the vacuum state, the effective
Hamiltonian reduces to

HE ¼ X
X2

j¼1

jejihejj þ
X2

k;j¼1;k 6¼j

rþk r�j

 !
: ð4Þ

The time evolution operator of the system is

U1;2ðtÞ ¼ expð�iHetÞ: ð5Þ

Then the relevant states of the atomic system at any time t can be
given by

jgkeji ! e�iXt½cosðXtÞjgkeji � i sinðXtÞjekgji�;
jg1g2i ! jg1g2i; jfkeji ! e�iXt jfkeji;
jfkgji ! jfkgji ðk; j ¼ 1;2; k 6¼ jÞ: ð6Þ

By choosing Xt ¼ p, we can obtain a two-qubit controlled phase
gate CPG from (6) as follows [20]:

jg1e2i ! jg1e2i; jg1g2i ! jg1g2i;
jf1g2i ! jf1g2i; jf1e2i ! �jf1e2i: ð7Þ
The two-qubit controlled phase gate CPG (7) can be used to gener-
ating atomic qubits cluster states. For example, assuming there are
N atoms are initially in the state

jWi01;N ¼ �
N

j¼1
jþji; ð8Þ

where as j are odd numbers jþji ¼ ðjgji þ jejiÞ=
ffiffiffi
2
p

, otherwise
jþji ¼ ðjgji þ jfjiÞ=

ffiffiffi
2
p

, then an N-atom one-dimensional (1D) cluster
state can be obtained by using the controlled phase gate of (7), i.e.,

jWiC1;N ¼ �
N

j¼1
CPGj;jþ1jþji ¼ �

N

j¼1
j0ji þ j1jirz

jþ1

� �
ð9Þ

with the convention CPGN;Nþ1 ¼ 1;rz
Nþ1 ¼ 1 and rz

j ¼ j0jih0jj � j1ji
h1jj. Here we have encoded jgi ! j0i and jeiðjf iÞ ! j1i. Eq. (9) im-
plies that a multipartite atomic qubits cluster state can be created
by sequential application of the controlled phase gate of (7) in
neighboring atoms. Note that the operations CPGj;jþ1 and CPGjþ2;jþ3

are separate and can also be simultaneously performed, which
can be understood by the quantum mechanical communication
½CPGj;jþ1;CPGjþ2;jþ3� ¼ 0. In this sense, the presented scheme may
take less time than previous ones [10,17] for the same purpose pre-
paring cluster states. As for the experimental design, we can,
respectively, put the cavities and atoms, related to CPGj;jþ1 and
CPGjþ2;jþ3, in parallel, and operate them simultaneously. Similarly,
arbitrary configurations as well as two-dimension (2D) of multi-
atom cluster states can be generated in accordance with this idea.

Next, we introduce another scheme for preparing multi-atom
cluster states by using the above system (also considering the
three-level Rydberg atoms). To this end, we first assume the Kth
atom is initially in the entangled state with other subsystems
ð1=

ffiffiffi
2
p
ÞðjfKijU0i þ jeKijU00iÞ, where jU0i and jU00i are arbitrary nor-

malized wave functions of the subsystems, and the (K + 1)th atom
is initially in the state jgKþ1i. We then let the two atoms interact
simultaneously with a vacuum cavity, the effective interaction
Hamiltonian is described by Eq. (4). After an interaction time
t ¼ p=ð2XÞ, the state of the atomic system evolves into

jUiK;Kþ1 ¼
1ffiffiffi
2
p ðjfKijgKþ1ijU0i � jgKijeKþ1ijU00iÞ: ð10Þ

After leaving the cavity, the (K + 1)th atom is sent through two clas-
sical fields tuned to the transitions jei $ jgi and jgi $ jf i, respec-
tively. Choosing the amplitudes and phases of the classical fields
appropriately so that this atom undergoes the transition

jgKþ1i !
1ffiffiffi
2
p ðjgKþ1i þ jeKþ1iÞ !

1ffiffiffi
2
p ðjfKþ1i þ jeKþ1iÞ;

jeKþ1i !
1ffiffiffi
2
p ðjgKþ1i � jeKþ1iÞ !

1ffiffiffi
2
p ðjfKþ1i � jeKþ1iÞ: ð11Þ

These operations can be described by a unitary operator

RKþ1 ¼ ðjgKþ1ihfKþ1j þ jfKþ1ihgKþ1Þ �
1ffiffiffi
2
p ðjgKþ1ihgKþ1j þ jeKþ1ihgKþ1j

þ jgKþ1iheKþ1j � jeKþ1iheKþ1jÞ: ð12Þ

Thus, under the action of RKþ1 the state (10) becomes

jUiC
0

K;Kþ1 ¼
1
2
jfKijU0i þ jgKijU00ið Þ jfKþ1irz

K þ jeKþ1i
� �

; ð13Þ

where rz
K ¼ jfKihfK j � jgKihgK j, and the subscript indicates that the

Pauli operator acts on the Kth atom.Now we show how a multi-
atom 1D cluster state can be prepared. Assuming N atoms initially
in the state

jUi01;N ¼
1ffiffiffi
2
p ðjf1i þ je1iÞjg2 � � � gNi; ð14Þ

and performing the operations mentioned above on every pair of
neighbor-labeled atoms, we obtain

jUiC
0

1;N ¼ V ½N�1�V ½N�2� � � �V ½1�
1ffiffiffi
2
p ðjf1i þ je1iÞjg2 � � � gNi

¼ 1

2N=2 �
N�1

j¼1
jgji þ jfjirz

j�1

� �
jeNi þ jfNirz

N�1

� �
ð15Þ

with the convention rz
0 ¼ 1 and V ½K� ¼ RKþ1UK;Kþ1ðt ¼ p

2XÞ ðK ¼ 1; � � � ;
N � 1Þ. The state (15) is just an N-atom 1D cluster state. Of course,
we can let the Nth atom subject to one classical pulse, which in-
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