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a b s t r a c t

One of the criteria for determining the existence of negative index of refraction in artificial electromag-
netic structures (metamaterials) is the occurrence of opposite directions of the group and phase veloci-
ties. In this work, we study specific examples of metamaterials where we show that the above criterion
does not hold when losses are taken into account and dominate the interaction of light with the meta-
material. The structure are three-dimensional superlattices of consisting of plasmonic and polaritonic
particles and are studied by a rigorous multiple-scattering theory and effective-medium approximation.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The field of metamaterials is one of the most fascinating disci-
plines in optics as properties and phenomena which cannot be
met in naturally occurring materials are realized via man-made
structures. Negative refractive index (NRI) [1,2] and invisibility
cloaking [3] are the most prominent features of the above materi-
als. The mainstream route for obtaining a negative refractive index
is to achieve a simultaneous occurrence of negative electric per-
mittivity and permeability which gives rise to NRI [4]. This is liter-
ally true for the case of negligible losses in the constituent
materials. When absorption comes into play, the spectral region
of NRI is also determined by the imaginary parts of the effective
permittivity �eff and permeability leff . It is not, therefore, necessary
to have a strict coincidence of the spectral regions with negative
real parts in the permittivity and permeability in the case of lossy
materials. The occurrence of NRI can also be inferred directly from
the frequency band structure of a metamaterial. Namely, in the
subwavelength limit and in the case where a single frequency band
exists over a given spectral region, a NRI is attributed to the meta-
material when the group velocity vg ¼ rkxðkÞ is opposite to the
phase velocity vph ¼ k̂x=k [5]. This is true in the limit of zero

losses where the group velocity assumes real values. In the case
where the inherent losses of the constituent metamaterials are ta-
ken into account, the group velocity is a complex function and the
definition of a NRI becomes problematic [6].

In this work, specific examples are studied where the criterion
described above does not hold. Namely, we calculate the complex
frequency band structure of a superlattice of plasmonic nano-
spheres as well as superlattices of alternating plates of plasmonic
and polaritonic spheres exhibiting NRI. We show, in particular,
that, within the frequency region of the surface-plasmon (SP) band,
although the real part of the (generally complex) group velocity is
opposite to the real part of the phase velocity, a NRI cannot be as-
sumed. The amount of losses is so high that light attenuation dom-
inates propagation within the superlattice of NPs and blurs the
occurrence of NRI. Our predictions are made on the basis of rigor-
ous multiple-scattering electrodynamics calculations as well as on
effective-medium theory and corroborate with previous require-
ments for the definition of negative refractive index.

2. Fcc crystal of plasmonic spheres

Our first case study is an fcc crystal consisting of Drude-type
spheres, i.e., their dielectric function is provided by

�ðxÞ ¼ 1�
x2

p

xðxþ is�1Þ ; ð1Þ
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where xp is the bulk plasma frequency of a given metal and s is the
relaxation time of conduction-band electrons. We have taken
ðxpsÞ�1 ¼ 0:05, a typical value of losses in metallic nanoparticles.
The first-neighbor distance is taken to be a0 ¼ c=xp (the lattice con-
stant is a ¼

ffiffiffi
2
p

a0) and the radius of the spheres S ¼ 0:2a0. The
superlattice is intentionally taken to be dilute so that the dipole
approximation is enough for the description of the interaction of
light with the structure.

The above structure is studied by means of the layer-multiple-
scattering (LMS) method. It is an efficient computational method
for the study of the EM response of three-dimensional photonic
structures consisting of non-overlapping spheres [7,8] and axisym-
metric nonspherical particles [9]. The LMS method is ideally suited
for the calculation of the transmission, reflection and absorption
coefficients of an electromagnetic (EM) wave incident on a com-
posite slab consisting of a number of layers which can be either
planes of non-overlapping particles with the same 2D periodicity
or homogeneous plates. For each plane of particles, the method cal-
culates the full multipole expansion of the total multiply scattered
wave field and deduces the corresponding transmission and reflec-
tion matrices in the plane-wave basis. The transmission and reflec-
tion matrices of the composite slab are evaluated from those of the
constituent layers. By imposing periodic boundary conditions one
can also obtain the (complex) frequency band structure of an infi-
nite periodic crystal. The method applies equally well to non-
absorbing systems and to absorbing ones. Its chief advantage over
the other existing numerical methods lies in its efficient and reli-
able treatment of systems containing strongly dispersive materials
such as Drude-like and polaritonic materials.

We view the superlattice as a succession of (001) planes of
Drude-type spheres, i.e., planes of spheres parallel to the (001)
surface of fcc. The lattice corresponding to this surface is square.
In Fig. 2a we show the complex frequency band structure for
kk ¼ 0 [normal to the (001) surface] where kk is the parallel com-
ponent of the Bloch wavevector k, reduced within the surface Brill-
ouin zone (SBZ) of the (001) surface. The component of the Bloch
wavevector along the z-axis is given in dimensionless units, i.e.,
kza=2p, where a is the lattice constant defined above. A calculation
of the complex frequency band structure offers, for a given fre-
quency x, both the real and imaginary parts of kz, the component
of the wavevector normal to the (001) surface. So, for a given dis-
persion relation x ¼ xðkzÞ, one can define the effective refractive
index as neff ¼ ckz=x. It is evident that the curve of Rkz exhibits
a strongly resonant behavior due to the excitation of SP modes
within the spheres. The interaction of SP modes of neighboring
spheres gives rise to the resonant frequency band of Fig. 2a [10].
Within the shaded spectral region of Fig. 2, Rkz decreases with
increasing frequency, i.e., the real part of the group velocity
Rvg ¼ @x=@Rkz is negative. This would signify the occurrence of
NRI. In Fig. 2b we show the effective refractive index neff ¼ ckz=x
for the two possible scenarios: negative and positive refractive in-
dex (PRI). We observe that the choice of PRI looks as a more natural
choice of neff as it is a smooth and continuous function of fre-
quency. The corresponding NRI band exhibits discontinuities at
both its edges. We note, however, that the discontinuities in neff

is not an uncommon phenomenon since it has also been reported
in cases where neff is retrieved by inverting the Fresnel’s equations
for a finite slab of a metamaterial [11]. Fig. 2c shows the corre-
sponding real part of the group index Rng ¼ c@Rkz=@x which is in-
versely proportional to the group velocity vg . The negative values
of Rng signify backward wave propagation which, is usually asso-
ciated with NRI. We note that in Fig. 2, as well as in Fig. 3 below,
there exist several, generally complex bands, within the studied
spectral region. However, we only show the frequency band with
the smallest Ikz at every frequency since wave propagation/atten-
uation within a finite slab of the crystal is determined by this par-

ticular band. It is worth noting that the structure of Fig. 1 is a truly
subwavelength metamaterial since the wavelength-to-structure
ratio is k=a0 ¼ 2pc=ðxmida0Þ � 11 where xmid is the middle fre-
quency of the shaded area of Fig. 2.

It should be pointed out that one can argue that in the NRI case
the phase and group velocities point to the same direction and not
to opposite directions since both neff and ng are negative. At the
same time, in the PRI case, neff is positive whilst ng is negative
and therefore the phase and group velocities point to opposite
directions. In reality, the sign of the group velocity does not depend
on the material (and hence on the frequency band structure) but
from the direction of energy flow of a pulse incident on the given
material. So, when a pulse is launched towards a slab of a material,
the group velocity points at the direction of the pulse propagation
which is taken as the positive direction by default. When a lossless
material has a dispersion relation with negative derivative of fre-
quency versus the wavevector, the corresponding neff has to be
negative in order to preserve causality [12].

In Fig. 2b and c, we also show the corresponding imaginary
parts of neff and ng , respectively. In an absorbing medium, the real

Fig. 1. Unit cell of an fcc superlattice of Drude-type spheres. a denotes the lattice
constant, a0 the first-neighbor distance and S the radius of the spheres.

Fig. 2. (a) Complex frequency band structure normal to the (001) surface of an fcc
crystal (lattice constant a ¼

ffiffiffi
2
p

c=xp) of Drude-type metallic spheres (Sxp=c ¼ 0:2)
in air, as calculated by the rigorous LMS method. (b) The corresponding effective
refractive index neff . (c) The group index ng . The solid (broken) lines refer to the real
(imaginary) parts of the quantities in the abscissas.
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