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a b s t r a c t

In the low-frequency limit with respect to the bulk plasma frequency of metal, damped surface-plasmon
resonance is examined for a periodic semi-infinite structure with metal–dielectric unit cells in slab geom-
etry. In comparison to the author’s earlier results in [1], the additional material damping is found to alter
the resonance characteristics in many nontrivial ways. In particular, the damped Bloch waves propagat-
ing in the direction normal to the slab planes are induced, thereby altering wave stability with respect to
the ratio of dielectric constants.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

As regards photonic periodic structures, the basic theory set
forth in [2] dealt with the dielectric–dielectric (D–D) bilayer unit
cells among other geometries. Periodic structures with unit cells
composed of metal–dielectric (M–D) bilayers have attracted more
attention from the nanophotonics community, since they had been
thoroughly analyzed in [3]. Periodic structures are also examined
as regards negative refraction and/or metamaterials, for instance,
in [4]. It is now well-known that the enhanced transmission
through such periodic M–D structures is related to the resonant
tunneling due to the surface-plasmon resonances (SPRs) and the
structural periodicity [2,3].

Along this line of approach, undamped surface-plasmon reso-
nance was examined in [1] for a periodic semi-infinite structure
with metal–dielectric unit cells in slab geometry as shown in
Fig. 1. The importance of the Bloch factor denoting the quasi-peri-
odicity in the out-of-plane depthwise direction (i.e., the ~x-direction
in Fig. 1) has been rediscovered, in assessing the wave stability
with respect to the ratio between two participating dielectric con-
stants. The main finding in [1] was that wave stability increases as

this ratio differs away from unity. However, the reason of publish-
ing a new research paper of [1] for the geometry in Fig. 1 lies in
investigating what happens in the low-frequency limit (LFL) with
respect to the bulk plasma frequency of metal. Here in this paper,
the material damping is introduced to see how the energy flow
direction is altered in association with the complex Bloch factor
[5]. The other interesting range of frequency just below the metal’s
plasma frequency was called the high-frequency limit (HFL) in [5],
where SPRs have been investigated both with and without material
damping for the same structure as in Fig. 1. Hence, Ref. [5] is the
HFL counterpart of the LFL combination of Ref. [1] and the present
paper. The results in the LFL and HFL are not entirely symmetric,
thereby exhibiting a different dependence on the period. In partic-
ular, the effects of resonant tunneling [3] turn out more uniform in
the present LFL, in comparison to more complex ones in the HFL
[5].

This paper is organized as follows. In Section 2, the dispersion
relation is derived for SPRs in the presence of material damping,
and its reduction to the low-frequency limit is briefly discussed.
In Section 3, the issue of wave stability is reviewed. In Section 4,
complex solutions to the dispersion relation are discussed. In Sec-
tion 5, various characteristics of frequency dispersion are explored
on the iso-frequency contours. In Section 6, the Bloch angles are
discussed as regards energy defocusing. In addition, the migrations
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of the complex roots are under examination with the variation in
material damping. In Section 7, discussions are provided, and con-
clusions are drawn.

2. Problem formulation

Most of the notations follow those in [1], except for those em-
ployed in [5]. Except for the obvious cases, dimensional quantities
are denoted by overhead tilde signs, while dimensionless ones are
without tildes. The terms lossy and lossless will be used inter-
changeably with ‘‘with” and ‘‘without” material damping, respec-
tively. Table 1 lists key parameters and variables as an occasional
reminder. The plasma frequency and light speed in vacuum are de-
noted by ~xp and ~c0, respectively. Correspondingly, the plasma
wave number ~kp ¼ ~xp=~c0 and plasma wavelength kp ¼ 2p~c0= ~xp

are defined. In consideration of Fig. 1, the time ~t and space
coordinates ð~x; ~y;~zÞ in the depthwise, longitudinal, and transverse
directions are made dimensionless such that s ¼ ~xp~t
and ðX;Y ; ZÞ ¼ ~kpð~x; ~y;~zÞ. A unit cell is composed of one metallic
sub-layer and its adjacent dielectric sub-layer of the respective
thicknesses ~hm and ~hd. The dimensionless thicknesses are formed
such that hj ¼ ~kp

~hj with j = m, d. Hence, the period or unit-cell
thickness is given by the sum hu = hm + hd. In addition, the metal’s
filling fraction f is defined by f ¼ ~hm

~hu. The relative dielectric con-
stants are denoted by ej, now with j = m, d, s. For the operating fre-
quency ~x, the reduced frequency is defined by X ¼ ~x= ~xp. The
material dispersion of metal em = emr�iemi is given by the lossy
Drude model em ¼ 1� ~xð ~x� i~c1Þ½ ��1 ~x2

p with i = (�1)1/2. Here, c1

is the material damping frequency [5–8]. In dimensionless form,

em ¼ 1� 1
X2

1
1� ic

; c ¼
~c1

~x
> 0 ð1Þ

As a consequence, the metallic nature emr < 0 is ensured for
(1 + c2)X2 < 1. It is noted that ed,es > 0, where the subscript s implies
the substrate. In particular, c was conveniently introduced for Fig. 5
of [6]. For reference, the lossless Drude model is then defined to be
em = 1�X�2 when setting c1 = 0 or c = 0. For an numerical example

with (X, c) = (0.25, 0.0341), em = �15.0�i0.545 according to Eq.
(1), which turn out not to be a bad approximation to
em = �15.0�i1.1 shown in Fig. 1 of [7].

The transverse-magnetic (TM) waves are described by
~E ¼ ðEx;0; EzÞ and H

*

¼ ð0;Hy;0Þ. Longitudinally propagating waves
are represented by the factor exp ið ~x~t � ~b~zÞ

h i
, with the complex

~b as the longitudinal propagation constant. The component Hy is
then expressed by Hy(s, X, Z) = F(X) exp [i(Xs � bZ)], where
b ¼ ~b=~kp ¼ br � ibi. According to the phasor exp (iXs), the factor
(1 � ic) in Eq. (1) is chosen for em, and therefore, emi > 0 is compat-
ible with c > 0 [5]. Besides, the dimensionless parameters Dj = (b2 �
ejX

2)1/2 and Uj = (ejX)�1Dj are introduced for TM waves. The profile
in the 0 th unit cell is denoted by F0

j ðXÞ ¼
P

v¼�Ajv exp
vDjðX � ddjhmÞ
� �

, where Aj± are undetermined coefficients, and ddj

is the Kronecker’s symbol. It is noticed here that F0
mðXÞ and F0

dðXÞ
are defined over the intervals X e [0, hm] and X e [hm, hu], respec-
tively. Its counterpart in the l th unit cell is then represented via
the Bloch-Floquet theorem as follows [4,5]:

Fl
jðXÞ ¼ ClF0

j ðX � lDuÞ; C ¼ jCj expð�ilÞ ð2Þ

For the Bloch factor C, its amplitude |C| is the attenuation (or
amplification) constant per unit cell, while the Bloch angle l is
the relative phase with increasing unit-cell number. In the mean-
time, the depthwise profile Fs(X) = Cs exp (DsX) is assumed for the
semi-infinitely extended medium lying in the domain X < 0, with
Cs as an yet another undetermined coefficient. The following sur-
face-wave condition (SWC) is necessary for evanescent waves to
be supported in the substrate:

RðDsÞ ¼ Rð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � esX

2
q

Þ > 0 ð3Þ

Hence, the light line for the substrate is defined by the curve
RðDsÞ ¼ 0 [1,5]. In other words, the wave-vector regime
jbj < e1=2

s X for the volume (guided) waves reduces to null in the
LFL X ? 0+. The dispersion relation valid for any X is obtained to be

2þ ½ðPþ �P�Þ cothðDdhdÞ þ ðPþ þP�Þ� tanhðDmhmÞ ¼ 0 ð4Þ

Here, P± = [Um(Us ± Ud)]�1[(Um)2 ± UsUd]. As is well-known, the
transverse-electric (TE) waves do not support SPRs throughout the
whole structure [1]. As an aside, it is remarked however that there
are no surface waves but volume waves on the substrate side for TE
waves [2].

With reference to Eq. (1), the low-frequency limit (LFL) is de-
fined by the limit X ? 0+, in which (�emr)?1 [3,7]. A formal lim-
iting procedure can be worked out on Eq. (4), in parallel with that
in [1]. It is worth mentioning that the parameter
bc ¼ lim

X!0þ
Dm ¼ ½b2 þ ð1� icÞ�1�1=2 appears in this process. There

are now two kinds of the distinguished limits as follows:

W2 ¼ ed lim
X;f!0þ

X2

f

 !
; c ¼ lim

X;c2!0þ

c2

X
: ð5Þ

In the first distinguished limit f ? 0+ and X ? 0+ (X, f ? 0+) of Eq.
(5), Eq. (3.6) of [1] remains the same, but tanh (fhubc) ? fhubc for Eq.
(4) in place of Eq. (3.7) of [1]. In the second distinguished limit of Eq.
(5), another limit c2 ? 0+ is now introduced for small material

Table 1
Key parameters and variables. Dimensional quantities are denoted by overhead tilde signs, while dimensionless ones are without tildes.

X ¼ ~kp~x; s ¼ ~xp~t; ~kp ¼ ~xp=~c0; kp ¼ 2p~c0= ~xp; hj ¼ ~kp
~hj; f ¼ ~hm=

~hu; b ¼ br � ibi; b ¼ ~b=~kp ;

X ¼ ~x= ~xp; em ¼ emr � iemi ; c ¼ ~c1= ~x; c2 ¼ ~c1= ~xp; c ¼ c2=X;Dj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � ejX

2
q

;

Uj ¼ ðejXÞ�1Dj;C ¼ Cr � iCi;C ¼ jCj expð�ilÞ; bm ¼ bc ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 þ ð1� icÞ�1

q
; bc ¼ bc;r � ibc;i;

bd ¼ b;R ¼ es=ed;B ¼ hub;Vp ¼ ~x=ð~c0
~bÞ ¼ X=bÞ;Vg ¼ ~c�1

0 ð@ ~x=@~bÞ ¼ @X=@b;W2 � edðX2=f Þ;
Rf 3 ¼ RW [ Rc [ RC;Ra3 ¼ RB � Rf 3

Fig. 1. Periodic semi-infinite structures.
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