
Focusing and phase compensation of paraxial beams by a
left-handed material slab

Hailu Luo a,*, Wei Hu b, Zhongzhou Ren a, Weixing Shu a, Fei Li a

a Department of Physics, Nanjing University, Nanjing 210008, China
b Laboratory of Light Transmission Optics, South China Normal University, Guangzhou 510630, China

Received 9 October 2005; received in revised form 9 April 2006; accepted 26 April 2006

Abstract

On the basis of angular spectrum representation, a formalism describing paraxial beams propagating through an isotropic left-handed
material (LHM) slab is presented. The treatment allows us to introduce the ideas of beam focusing and phase compensation by LHM
slab. Because of the negative refractive index of LHM slab, the inverse Gouy phase shift and the negative Rayleigh length of paraxial
Gaussian beam are proposed. It is shown that the phase difference caused by the Gouy phase shift in right-handed material (RHM) can
be compensated by that caused by the inverse Gouy phase shift in LHM. If certain matching conditions are satisfied, the intensity and
phase distributions at object plane can be completely reconstructed at the image plane.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In the late 1960s, Veselago firstly introduced the concept
of left-handed material (LHM) in which both the permit-
tivity e and the permeability l are negative [1]. Veselago
predicted that electromagnetic waves incident on a planar
interface between a right-handed material (RHM) and a
LHM will undergo negative refraction. Theoretically, a
LHM planar slab can act as a lens and focus waves from
a point source. Experimentally, the negative refraction
has been observed by using periodic wires and rings struc-
ture [2–6]. In the past few years, negative refractions in
photonic crystals [7–10] and anisotropic metamaterials
[11–15] have also been reported.

Recently, Pendry extended Veslago’s analysis and fur-
ther predicted that a LHM slab can amplify evanescent
waves and thus behaves like a perfect lens [16]. It is well

known that in a conventional imaging system the evanes-
cent waves are drastically decayed before they reach the
image plane. While in a LHM slab system, both the phases
of propagating waves and the amplitudes of evanescent
waves from a near-field object could be restored at its
image. Therefore, the spatial resolution of the superlens
can overcome the diffraction limit of conventional imaging
systems and reach the subwavelength scale. While great
research interests were initiated by the revolutionary con-
cept [17–20], hot debates were also raised [21–27].

The main purpose of the present work is to investigate
the paraxial beams propagating through an isotropic
LHM slab. Starting from the representation of plane-wave
angular spectrum, we derive the propagation of paraxial
beams in RHM and LHM. Our formalism permits us to
introduce ideas for beam focusing and phase compensation
of paraxial beams by using LHM slab. Because of the neg-
ative refractive index, the inverse Gouy phase shift and
negative Rayleigh length in LHM slab are proposed. As
an example, we obtain the analytical description for a
Gaussian beam propagating through a LHM slab. We find
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that the phase difference caused by the Gouy phase shift in
RHM can be compensated by that caused by the inverse
Gouy phase shift in LHM.

2. The paraxial model of beam propagation

In this section, we present a brief derivation on paraxial
model in RHM and LHM. Following the standard proce-
dure, we consider a monochromatic electromagnetic field
E(r,t) = Re[E(r)exp(�ixt)] and B(r,t) = Re[B(r)exp(�ixt)]
of angular frequency x propagating through an isotropic
material. The field can be described by Maxwell’s equations
[28]

r� E ¼ � oB

ot
;

r�H ¼ oD

ot
;

D ¼ eE;

B ¼ lH:

ð1Þ

One can easily find that the wave propagation is only per-
mitted in the medium with e, l > 0 or e, l < 0. In the for-
mer case, E, H and k form a right-handed triplet, while
in the latter case, E, H and k form a left-handed triplet.
The previous Maxwell equations can be combined straight-
forwardly to obtain the well-known equation for the com-
plex amplitude of the electric field in RHM or LHM

r2E�rðr � EÞ þ k2E ¼ 0; ð2Þ
where k = nR,Lx/c, c is the speed of light in vacuum,
nR ¼

ffiffiffiffiffiffiffiffiffiffi
eRlR

p
and nL ¼ �

ffiffiffiffiffiffiffiffiffiffi
eLlL

p
are the refractive index of

RHM and LHM, respectively [1].
Eq. (2) can be conveniently solved by employing the

Fourier transformations, so the complex amplitude in
RHM and LHM can be conveniently expressed as

Eðr?; zÞ ¼
Z

d2k?~Eðk?Þ exp½ik? � r? þ ikzz�: ð3Þ

Here r? = xex + yey, k? = kxex + kyey, and ej is the unit

vector in the j-direction. Note that kz ¼ r
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2

R;Lk2
0 � k2

?

q
,

r = 1 for RHM and r = �1 for LHM. The choice of sign
ensures that power propagates away from the surface to
the +z direction. The field ~Eðk?Þ in Eq. (3) is related to
the boundary distribution of the electric field by means of
the relation

~Eðk?Þ ¼
Z

d2r?Eðr?; 0Þ exp½ik? � r?�; ð4Þ

which is a standard two-dimensional Fourier transform
[29]. In fact, after the electric field on the plane z = 0 is
known, Eq. (3) together with Eq. (4) provides the expres-
sion of the field in the space z > 0.

From a mathematical point of view, the approximate
paraxial expression for the field can be obtained by the
expansion of the square root of kz to the first order in
jk?j/k [30,31], which yields

Eðr?; zÞ ¼ expðinR;Lk0zÞ
Z

d2k?

� exp ik? � r? �
ik?z

2nR;Lk0

� �
~Eðk?Þ: ð5Þ

Since our attention will be focused on beam propagating
along the +z direction, we can write

Eðr?; zÞ ¼ Aðr?; zÞ expðinR;Lk0zÞ; ð6Þ
where the field A(r?,z) is the slowly varying envelope
amplitude which satisfies the parabolic equation

i
o

oz
þ 1

2nR;Lk0

r2
?

� �
Aðr?; zÞ ¼ 0; ð7Þ

where $? = oxex + oyey. From Eq. (7) we can find that the
field of paraxial beams in LHM can be written in the sim-
ilar way to that in RHM, while the sign of the refractive in-
dex is reverse.

3. The propagation of paraxial Gaussian beam

The previous section outlined the paraxial model for
general laser beams propagating in RHM and LHM. In
this section we shall investigate the analytical description
for a beam with a boundary Gaussian distribution. This
example allows us to describe the new features of beam
propagation in LHM slab. As shown in Fig. 1, the LHM
slab in region 2 is surrounded by the usual RHM in region
1 and region 3. The beam will pass the interfaces z = a and
z = a + d before it reaches the image plane z = a + b + d.
To be uniform throughout the following analysis, we intro-
duce different coordinate transformations z�i ði ¼ 1; 2; 3Þ in
the three regions, respectively.

First we want to explore the field in region 1. Without
any loss of generality, we assume that the input waist
locates at the object plane z = 0. The fundamental
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Fig. 1. The mechanisms for paraxial beams propagating through an
isotropic LHM slab. The LHM slab in region 2 is surrounded by the usual
RHM in region 1 and region 3. The solid line and the dashed line are the
theoretical object and image planes, respectively.
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