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Abstract

We propose an efficient scheme for realizing squeezing for a cavity mode. In the scheme, a collection of ladder-type three-level atoms
are trapped in a cavity and driven by two classical fields. Under certain conditions, the cavity field deterministically evolves to a squeezed
state. The scheme can also be used for conditional generation of superpositions of different squeezed vacuum states.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Recently, the problem of generating various quantum
states has been a central topic in quantum optics. Of special
interest are the squeezed states of an electromagnetic field,
whose quantum fluctuation in one quadrature is below the
vacuum level [1]. The squeezed states are defined as

jn; ai ¼ SðnÞDðaÞj0i; ð1Þ
where j0i is the vacuum state, DðaÞ ¼ eaaþ�a�a is the dis-
placement operator, and SðnÞ ¼ eðn

�a2�naþ2Þ=2 is the squeeze
operator, with a and a+ being the annihilation and creation
operators for the harmonic oscillator and n = reih being the
squeeze factor. The variances of the quadrature phase
operators X 1 ¼ ðaþeih=2 þ ae�ih=2Þ=2 and X 2 ¼ iðaþeih=2

�ae�ih=2Þ=2 are ðDX 1Þ2 ¼ e�2r=4 and ðDX 2Þ2 ¼ e2r=4,
respectively. Therefore, the noise in one quadrature is re-
duced below the quantum limit. The squeezed fields are
useful in optical communications [2] and gravitational
wave detection [3].

On the other hand, the two-mode squeezed states are
defined as

jn; a; bi ¼ S0ðnÞDðaÞDðbÞj0; 0i; ð2Þ
where S0ðnÞ ¼ eðn

�ab�naþbþÞ=2 is the two-mode squeeze opera-
tor, with a and b being the annihilation operators for the
two harmonic oscillators. The two-mode squeezed states
are essentially highly entangled states. In the limit jnj ! 1,
the two-mode squeezed vacuum state is exactly the original
Einstein–Podolsky–Rosen entanglement [4]. Such states
can be employed to test Bell’s inequalities [5] and realize
quantum teleportation [6].

Cavity QED is a qualified candidate for quantum state
engineering and quantum information processing [7–9].
Schemes have been proposed for the implementation of
squeezing for a cavity field via interaction with a single dri-
ven three-level atom [10–12]. More recently, Prado et al.
[13] have shown that the squeeze operator can be obtained
by using a single driven two-level atom. Guzman et al. [14]
have presented a scheme for realizing squeezing via interac-
tion with an atomic sample. In this paper, we present an
alternative scheme for deterministic generation of squeezed
states for a microwave cavity field. Like the schemes of Ref.
[10–13], our scheme also uses driven atoms. During the
interaction, the atoms are not entangled with the cavity
field and no conditional measurements are required. How-
ever, our scheme uses collective interaction of N atoms with
the cavity field and thus, the squeeze parameter increases
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with the number of atoms as considered in Ref. [14]. In
comparison with the scheme of Ref. [14] based on
four-photon transition induced by the cavity field and
two weak classical fields, our scheme uses strongly driven
two-photon transition and thus, the effective coupling
strength is greatly increased, which is important in view
of decoherence.

The paper is organized as follows. In Section 2, we study
the interaction of a collection of three-level atoms with the
cavity field and a strong classical field. In Section 3, we show
how we can generate the squeezed state for a cavity field via
this model. In Section 4, we give a brief discussion on the
experimental issues. A summary appears in Section 5.

2. The model

We consider N identical three-level atoms simulta-
neously interacting with a single-mode cavity field and dri-
ven by a classical field. The interaction between a collection
of atoms and a cavity field has been extensively studied
[15]. The cavity mode is coupled to the transitions jgi ! jii
and jii ! jei with the detunings being D and �(D + d),
respectively, as shown in Fig. 1. Meanwhile, the transitions
jgi ! jii and jii ! jei are driven by two strong classical
fields with the detunings being D 0 and �D 0, respectively.
In the interaction picture the Hamiltonian is

H ¼ H 1 þ H 2; ð3Þ
where

H 1 ¼
XN

j¼1

g1aþeiDtjgjihijj þ g2aþe�iðDþdÞtjijihejj þ H :c:
� �

; ð4Þ

H 2 ¼
XN

j¼1

X eiD0tjgjihijj þ e�iD0tjijihejj þ H :c:
� �

; ð5Þ

a+ and a are the creation and annihilation operators for the
cavity mode, g1 and g2 are the coupling strengths between
the cavity mode and the transitions jgi ! jii and jii ! jei,
respectively. X is the Rabi frequency of the classical field.
Here we assume that the classical fields have the same Rabi
frequency X and phase 0 by adjusting the amplitudes and
phases of the classical fields appropriately.

Under the conditions D;D0; jD0 � Dj �
ffiffiffiffi
N
p

g1;
ffiffiffiffi
N
p

g2;
d;X, the probability for the atoms undergoing a single-
photon transition is negligible. If the atoms are initially
not populated in the intermediate state jii they will not
populate this state during the interaction. In this case the
state jii can be adiabatically eliminated and H1 can be
replaced by the effective Hamiltonian

H 1;e ¼
XN

j¼1

b1aþajgjihgjj þ b2aaþjejihejj þ kaþ2e�idtjgjihejj
�

þ ka2eidtjejihgjj�; ð6Þ

where b1 ¼ g2
1=D; b2 ¼ g2

2=D, and k ¼ g1g2=D. The first two
terms describes the photon-number-dependent Stark shifts,
while the third and fourth terms describe the two-photon
transition. On the other hand, H2 can be replaced by the
effective Hamiltonian

H 2;e ¼
XN

j¼1

eðjgjihgjj þ jejihejj þ jgjihejj þ jejihgjjÞ; ð7Þ

where e ¼ X2=D0. In this case, the Stark shifts for the upper
level jei and lower level jgi are identical so that the Stark
shifts only induce a trivial common phase shift. Define
the new atomic basis [16]

jþji ¼
1ffiffiffi
2
p ðjgji þ jejiÞ; j�ji ¼

1ffiffiffi
2
p ðjgji � jejiÞ: ð8Þ

Then, we can rewrite H1,e and H2,e as

H 1;e ¼
1

2

XN

j¼1

b1aþaðIj þ rþj þ r�j Þ þ b2aaþðIj � rþj � r�j Þ
n

þke�idtaþ2ðrz;j þ rþj � r�j Þ þ keidta2ðrz;j þ r�j � rþj Þ�
o
;

ð9Þ

H 2;e ¼
XN

j¼1

eðrz;j þ IjÞ; ð10Þ

where I j ¼ ðjþjihþjj þ j�jih�jjÞ; rz;j ¼ ðjþjihþjj � j�ji
h�jjÞ; rþj ¼ jþjih�jj and r�j ¼ j�jihþjj.

The time evolution of this system is decided by Schrö-
dinger’s equation:

i
djwðtÞi

dt
¼ H jwðtÞi: ð11Þ

Performing the unitary transformation

jwðtÞi ¼ e�iH2;et jw0ðtÞi; ð12Þ

Fig. 1. The configuration of the strongly driven atom–cavity system. The
cavity mode is coupled to the transitions jgi ! j ii and jii ! jei with the
detunings being D and �(D + d), respectively. Meanwhile, the transitions
jgi ! jei and jii ! jei are driven by two strong classical fields with the
detunings being D 0 and �D 0, respectively.

346 S.-B. Zheng / Optics Communications 278 (2007) 345–349



Download English Version:

https://daneshyari.com/en/article/1540453

Download Persian Version:

https://daneshyari.com/article/1540453

Daneshyari.com

https://daneshyari.com/en/article/1540453
https://daneshyari.com/article/1540453
https://daneshyari.com

