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Abstract

In this paper we perform an experimental evaluation of a state estimation approach in process tomography. In particular, we concentrate on the
case where a system with rapidly moving target is imaged with electrical impedance tomography. We show experimental results which confirm
that non-stationary estimation with proper fluid dynamical models works well even in cases where stationary estimates are completely useless.
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In process tomography the aim is to monitor industrial pro-
cesses on the basis of indirect observations from the boundary
of the target. Techniques used in process monitoring are basi-
cally the same as in medical imaging. The variety of modalities
include electrical, optical, X-ray and nuclear tracer techniques.
In many applications one is often interested in imaging targets
that change very rapidly. That is the case for example in mixing
[1–3] and mass transport [4–6] applications. If the target changes
at a very high rate in comparison with the rate of measure-
ments, the stationary tomographic reconstructions are usually
inadequate. In such cases the reconstructions may be improved
by using the state estimation approach [7]. In state estimation
approaches the temporal behavior of the target is modeled and
the model is used in the image reconstruction to provide further
information on the target.

In [8,9] we applied the state estimation approach to electrical
impedance tomography (EIT) in the case of moving fluids. We
modeled the dynamics of the system using the Navier–Stokes
equations and the convection–diffusion (CD) equation. The
resulting stochastic evolution model together with the obser-
vation model of EIT constituted the state-space representation
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of the system. The reconstruction of conductivity distributions
was based on this representation, and the algorithms used in
the image reconstruction were of the Kalman Filter type. The
cited numerical studies have shown that the use of state estima-
tion with suitable evolution models may improve the estimates
considerably.

The aim of this paper is to provide an experimental valida-
tion of the state estimation approach in EIT. State estimation has
already been applied to real EIT data in papers [10–12]. How-
ever, in these papers the random walk model has been used as
the evolution model, instead of more realistic models.

In this paper we consider an experimental EIT measurement
set up consisting of a saline-filled tank with a rotating impeller
and a saline-filled table tennis ball floating in the tank. EIT mea-
surements are carried out and the state estimation approach with
an appropriate evolution model is used in the reconstruction
of the conductivity distribution within the tank. The evolution
model is based on approximate fluid dynamical modeling of
the system and on a convection–diffusion model. The time-
dependent internal structure, i.e. the impeller, is also taken into
account in the reconstruction.

2. State estimation in EIT

In EIT conductive targets are monitored using electrical
boundary measurements. Electric current is injected into the
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target using electrodes attached to the boundary of the target. The
resulting voltages between the electrodes are measured and the
internal conductivity distribution is reconstructed on the basis
of the voltage measurements.

The reconstruction problem has a nature of an ill-posed
inverse problem – even in a stationary case – and hence special
estimation methods and appropriate modeling of the measure-
ments are always required. An additional difficulty arises from
time-varying targets because the voltage measurements at dif-
ferent times do not correspond to the same target. Hence, the
use of data corresponding to multiple current injection patterns
may lead to severe inaccuracies. On the other hand, when using
ordinary (stationary) reconstruction algorithms, a single cur-
rent injection does not (usually) yield adequate information for
reconstructing the conductivity distribution. In order to tackle
the problem of non-stationarity, we write EIT in state-space
formalism, and utilize fluid dynamical modeling in the recon-
struction.

In Section 2.1 we review the observation model of EIT. We
also point out the difference between the stationary and the non-
stationary reconstruction problems. In Section 2.2 we introduce
one fluid dynamical model, the convection–diffusion model,
which is used for modeling the time-dependence of the target
in this paper. Finally, in Section 2.3 we write the reconstruction
problem of EIT in the form of a state estimation problem and
introduce two algorithms, Kalman filter and fixed-lag Kalman
smoother that can be used for solving the problem.

2.1. Observation model

In EIT, alternating currents I� are applied to electrodes on
the surface of the object, and the resulting voltages between
different pairs of electrodes are measured. The conductivity dis-
tribution σ within the object is reconstructed on the basis of the
voltage measurements. We model the observations by using the
complete electrode model (CEM) which is known to be so far
the most accurate model used in EIT [13]. The CEM consists of
the following equations:

∇ · (σ∇u) = 0, x ∈ Ω (1)

u + z�σ
∂u

∂n
= U�, x ∈ e�, � = 1, 2, . . . , L (2)

∫
e�

σ
∂u

∂n
dS = I�, x ∈ e�, � = 1, 2, . . . , L (3)

σ
∂u

∂n
= 0, x ∈ ∂Ω\∪L

�=1e� (4)

where u = u(x) is the electric potential, e� the �th electrode, z�

the contact impedance between the �th electrode and contact
material, U� the potential on �th electrode, I� the injected current,
n the outward unit normal and L is the number of the electrodes.
In addition, the charge conservation law

L∑
�=1

I� = 0 (5)

needs to be fulfilled. Further, in order to determine uniquely
the potentials u and U� based on the CEM, the reference level
of potential needs to be fixed. This is achieved, e.g. by writing

L∑
�=1

U� = 0 (6)

We approximate the complete electrode model numerically
using the finite element method (FEM), see [13–15]. The result-
ing finite dimensional observation model is of the form

Vt = Ut(σt) + υt, (7)

where t is a discrete time index, Vt the observed voltages
resulting from one current injection pattern, σt ∈ R

N a finite-
dimensional approximation of the conductivity distribution at
time t, Ut(σt) a non-linear mapping between the conductivity
and voltages and υt is observation error. If we further linearize
the observation model (7) we obtain

Vt = Ut(σ∗) + Jt(σt − σ∗) + υt, (8)

where the matrix Jt is the Jacobian corresponding to the model
Ut (σ) and the vector σ* is a linearization point.

In a stationary case it is assumed that the conductivity
within the target does not change during the measurements,
i.e., σ1 = σ2 = · · · = σT =: σ. Thus, the observation models corre-
sponding to different current injection patterns I1, I2, . . ., IT can
be combined into one stationary model

V = U(σ) + υ, (9)

where
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V1

V2

...
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⎥⎥⎥⎥⎦ .

(10)

Thus, in a stationary case the conductivity distribution σ is
reconstructed based on the observation model (9). The recon-
struction problem is known to be ill-posed, and hence spatial
prior information of the target is needed to be utilized in the
reconstruction. Spatial prior information is typically incorpo-
rated into the problem formulation by using the Tikhonov regu-
larization scheme. The regularized solution is of the form
�
σ = arg min

σ
{||V − U(σ)||2 + αR(σ)},

where R(σ) > 0 is a functional that favors certain a priori
known features in the minimization and α > 0 is a regulariza-
tion parameter. The regularizing functional is usually selected
as R(σ) = ||L(σ − σprior)||2, where the regularization matrix L is
typically a discrete differential operator, a choice which yields
smooth estimates, and σprior is a prior guess for σ.

In the non-stationary case, however, the assumption that the
conductivity distribution is non-varying during a set of different
current patterns is no longer valid and therefore the stationary
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