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Abstract

A theoretical formalism describing the formation of images in a linear shift invariant X-ray optical system is derived within the wave-
optical theory. It is applicable to a non-crystalline object consisting of two types of features, with the characteristic sizes which are respec-
tively not smaller and much smaller than the resolution of the imaging system. This formalism is then applied to two phase-contrast
imaging techniques, the propagation-based and analyser-based imaging. The obtained formulae for the intensity distribution in the
image well explain the “decoherence effect’” which is observed in the former technique and the “extinction contrast” which is a charac-
teristic of the latter technique. This formalism is shown to be in good agreement with the results of the accurate numerical simulations,
using rigorous wave-optical theory, of the propagation-based and analyser-based phase-contrast images of the model objects.
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1. Introduction

X-ray phase-contrast imaging techniques are routinely
employed for studies of biological and non-biological
objects. In general, each object contains features of differ-
ent sizes, including those whose characteristic size is much
larger than the resolution of the imaging system, as well as
the features that are unresolvable by the imaging system.
Although being unresolvable, these fine features signifi-
cantly affect the phase-contrast images, in a way specific
for each phase-contrast imaging technique. For example,
in propagation-based imaging (PBI) [1-3] the fine features
can result in appearance of speckles (see, for example, [4]
and references herein) as well as in significant reduction
of contrast of the resolvable features if those are over-
lapped by the fine features. The latter effect is usually
attributed to the loss of coherence in the X-ray beam
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(“decoherence effect”) that results in appearance of a low
coherence component in the beam [5]. In fact, as was
emphasized by Nugent and colleagues [6], it is the finite res-
olution of the experimental imaging system that performs
the spatial ensemble average that only appears as a loss
of coherence (the degree of coherence is actually preserved
while the radiation propagates through the system). In ana-
lyser-based imaging (ABI) [7-9], similar effects are also
observed and the most profound one is the so-called
“extinction contrast” (see, for example, [10-12]) which
originates from the finite angular width of the analyser
reflectivity curve which filters out the high angular compo-
nents of the incident wave.

Given a complex amplitude of the wave in the exit
plane of an object, the corresponding intensity distribu-
tion in the detector plane can be accurately calculated
in PBI and ABI using wave-optical formalism (direct
problem, see Section 2). Unfortunately, the inverse prob-
lem, consisting in reconstruction of the complex ampli-
tude of the object wave given an intensity distribution
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in the corresponding image, has no general analytical
solution within the wave-optical approach. However,
under certain conditions on the properties of the object
wave or the optical system, an approximate solution of
the direct problem can be obtained that could be easily
inverted to give a solution of the inverse problem. For
example, if the complex amplitude of the object wave var-
ies slowly on a length scale, equal to the first Fresnel zone
width in PBI and to the extinction length of the crystal in
ABI, the transport of intensity equation (TIE) [13] and
the geometrical optics approximation (GOA) [14,15] are
valid in PBI and ABI respectively. The GOA is widely
used in ABI. For example, a well-known DEI phase/
amplitude reconstruction algorithm [16] is based on the
GOA. Note however, that the validity conditions of the
GOA are strongly violated in the presence of fine features
in the object. In order to take the “extinction effect” into
account, two modifications to the main formula of the
GOA [14,15] were proposed, respectively in [10] and
[12,17] under assumption that fine features are unresolv-
able by the imaging system. Note however, that both
modifications were presented without a rigorous justifica-
tion, using simple semi-empirical considerations.

In this paper, using rigorous wave-optical formalism, we
derive a general formula for an intensity distribution in the
image produced by an arbitrary linear shift invariant imag-
ing system. This formula is applicable to a phase object
that consist of two types of features: large features which
are well resolvable by the system; and fine features which
are much smaller than the large ones and are unresolvable
by the imaging system. This result is consequently applied
in Section 3 to the PBI and ABI techniques.

2. Main assumptions and general formulae

Let a monochromatic plane wave of unit intensity,
exp(ikz), be incident on a pure phase object. Here k = 2n/
A is the wave number in vacuum corresponding to the X-
ray wavelength 4. We assume that the projection approxi-
mation is valid and therefore the propagation of this wave
through the object can be described by a transmission func-
tion of the object, g(x) = exp[ip(x)], so that the complex
amplitude of the wave in the exit plane of the object is sim-
ply a product exp(ikz) ¢(x). The intensity of this wave is
one; which indicates that no information about the object
can be extracted from this contact image. In order to visu-
alize the phase ¢(x) induced by the object, a linear shift-
invariant (LSI) optical system can be installed between
the object and the detector. Any LSI system is character-
ised in the real space by a complex propagator P(x) that
relates the complex amplitude E(x) of the wave on the exit
of the system (in the detector plane) to the complex ampli-
tude exp(ikz) ¢g(x) of the wave on the entrance of the system
as follows:

E(x) = exp(ikz) / dx'P(x')g(x — x'). (1)

The intensity distribution in the detector plane is then writ-
ten as follows:

I(x) = / / AW dx"P( )P (") q(x — ¥')q" (x — x")
- / / dYdx"P(x )P (x")

x exp [i{o(x —x') — @(x —x")}]. (2)

Taking into account finite resolution of the imaging system
(due to the finite source size and detector resolution), the
detected image 7(x) is obtained by convolution of the
intensity /(x) (that would be obtained by an ideal system
with delta-like resolution) and the point spread function
(PSF) S(x) of the imaging system:

19 = [ e =5)s0) o)
It is worth summarising the assumptions made so far:

(1) monochromatic incident of unit
amplitude;

(2) pure phase object;

(3) validity of the projection approximation;

(4) LSI imaging system.

plane wave

We now turn our attention to the object and introduce
two practically important models.

2.1. An object consisting of randomly distributed
unresolvable features

Let an object consist of small features that are not
resolvable by the system (solely due to the finite resolution
of the detector in our idealised case of a monochromatic
plane incident wave). Then the phase of the wave transmit-
ted through the object is fast oscillating on the length scale
of the resolution of the system, which will be indicated by
an index f'in the phase function, ¢/(x), and the correspond-
ing intensity in the image, /(x). Using Egs. (2) and (3), the
latter is written as follows:

1,0 = [ [ aacrir e [aso)

< exp [i{o,(x—y—x) =, (x—y—x")}]. (4

If we assume that these unresolvable features are distrib-
uted randomly and the characteristic size of the features
is much smaller than the width of the system PSF, S(x),
then the inner integral in Eq. (4) can be well approximated
as follows:

/ dyS(y)exp [i{o,(x—y—x) — @ (x —y —x")}]

= /dyS(y)F(X’ —x'x—y), (5)

where I'(x' —x";x) = exp [i{¢,(x —x) — ¢ (x —x")}] is an
autocorrelation function of the random phase induced by
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