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Abstract

The propagation characteristics of higher-order annular Gaussian (HOAG) beams in turbulence are investigated. From a
HOAG source plane excitation, the average intensity of the receiver plane is developed analytically. This formulation is verified
against the previously derived HOAG beam solution in free space. The graphical outputs indicate that, upon traveling in turbulent
atmosphere, the HOAG beam will undergo different stages of evolution. At intermediate propagation distances, it will attempt to
concentrate the energy near the origin. In this process, the appearance of the single higher-order primary beam will be encoun-
tered. Eventually HOAG originated beam will become a pure Gaussian beam after propagating an excessive distance in the tur-
bulent medium.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

In two of our recent works, we have presented the prop-
agation of higher-order annular beams in free space as well
as their log-amplitude and phase fluctuations in the pres-
ence of atmospheric turbulence [1,2]. With these studies,
our primary aim was to examine the suitability of various
beams for broadband access free space optics (FSO) com-
munication links. The present work is a continuation of
such efforts in which the intensity at the source plane and
the average intensity at the receiver plane of HOAG beams
are evaluated against the variations in the source and prop-

agation parameters, namely respective source sizes, ampli-
tude factors, displacement parameters, mode indices,
propagation distance, wavelength of operation and turbu-
lence strength.

There is some literature on the subject of annular beams
primarily dealing with its production at the resonator stage
[3–10]. In a recent publication, Vetelino and Andrews [11]
demonstrated that a doughnut-shaped annular Gaussian
beam may have favourable scintillation properties as
compared to a collimated Gaussian beam without causing
additional beam spreading or irradiance loss for long prop-
agation distances in atmospheric turbulence. To our
knowledge, the propagation characteristics of higher-order
annular laser beam in turbulence has not been investigated
so far.

The HOAG beams do not necessarily retain the dough-
nut shape as formed by the fundamental Gaussian ones.
However, we continue to use the term ‘‘annular’’ to be in
line with the present terminology.
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2. Formulation of source and receiver plane intensities for

HOAG beams

Conventionally the annular beam comprises from the
difference of two co-centric beam fields, called primary
and the secondary. Hence a HOAG beam aligned to be
at the origin of the source plane oriented to be perpendic-
ular to the axis of propagation, z, will have the field
distribution

usðsx; sy ; z ¼ 0Þ ¼ An1m1H n1ðax1sx þ bx1ÞHm1ðay1sy þ by1Þ
� exp½�0:5kðax1s2

x þ ay1s2
yÞ�

� An2m2H n2ðax2sx þ bx2ÞH m2ðay2sy þ by2Þ
� exp½�0:5kðax2s2

x þ ay2s2
yÞ�; ð1Þ

where sx and sy are the x and y components of the source
plane vector s, such that s = (sx, sy). In Eq. (1), the index
numeral 1 refers to the primary beam, while 2 stands for
the secondary beam. An1m1 is the amplitude factor of the
primary field. Hn1(ax1sx + bx1) and Hm1(ay1sy + by1) are
Hermite polynomials describing the beam properties for
sx and sy directions, where n1 and m1 are the order, ax1

and ay1 characterize the width, bx1 and by1 are the complex
displacement parameters,

ax1 ¼ 1=ðka2
sx1Þ þ i=F x1; ay1 ¼ 1=ðka2

sy1Þ þ i=F y1; ð2Þ

where asx1, asy1 are Gaussian source sizes, and Fx1, Fy1 are
the focusing parameters along sx and sy directions, k is the
wave number and i = (�1)1/2. Equivalent definitions will
apply to the parameters of the secondary beam, by chang-
ing the subscript index from 1 to 2.

The source beam intensity of the HOAG beam is
obtained via multiplying the field expression, i.e., Eq. (1),
by its complex conjugate, thus

I sðs; z ¼ 0Þ ¼ I sðsx; sy ; z ¼ 0Þ ¼ usðsx; sy ; z ¼ 0Þu�s ðsx; sy ; z ¼ 0Þ;
ð3Þ

where * denotes the complex conjugate.
The field, ur(p, L, t), arriving on a receiver plane,

assumed to be located perpendicular to the axis of propa-
gation at z = L, is found via Huygens–Fresnel integral as

urðp; L; tÞ ¼ ½k expðikLÞ=ð2ipLÞ�
Z 1

�1

Z 1

�1
d2susðsx; sy ; z ¼ 0Þ

� exp½ikðp� sÞ2=ð2LÞ þ wðs; pÞ � 2ipft�; ð4Þ

where p = (px, py) represents the transverse receiver coordi-
nate, us(sx, sy, z = 0) is the field of the HOAG beam at the
source plane as supplied in Eq. (1), w(s, p) is the solution to
Rytov method representing the random part of the com-
plex phase of a spherical wave propagating from the source
point (s, z = 0) to the receiver point (p, z = L), f is the fre-
quency, and t refers to time.

Due to the existence of turbulence along the axis of
propagation, we are naturally interested in the quantities
averaged over the medium statistics. This way, the average
intensity at the receiver plane will become hI rðp; LÞi ¼

hurðp; L; tÞu�r ðp; L; tÞi, where h i stands for the ensemble aver-
aging. Using Eq. (4), hIr(p, L)i turns into

hI rðp; LÞi ¼ ½k2=ð2pLÞ2�
Z 1

�1

Z 1

�1

Z 1

�1

Z 1

�1
d2s1d2s2

� usðsx; sy ; z ¼ 0Þu�s ðsx; sy ; z ¼ 0Þ
� expfik½ðp� s1Þ2 � ðp� s2Þ2�=ð2LÞg
� hexp½wðs1; pÞ þ w�ðs2; pÞ�i; ð5Þ

The ensemble average term appearing on the fourth line of
Eq. (5) is [12]

hexp½wðs1; pÞ þ w�ðs2; pÞ�i ¼ exp½�0:5Dwðs1 � s2Þ�

¼ exp½�q�2
0 ðs1 � s2Þ2�; ð6Þ

where Dw(s1 � s2) represents the wave structure function,
and q0 ¼ ð0:545C2

nk2LÞ�3=5 is the coherence length of a
spherical wave propagating in the turbulent medium, C2

n

being the structure constant. Here, we note that Rytov
method is known to be valid in the weak turbulence regime
especially when fourth-order moments such as scintilla-
tions are considered. Customarily, weak turbulence is asso-
ciated with Rytov log amplitude variance 0:307C2

nk7=6L11=6

being quite smaller than unity. However, this article con-
cerns the second-order moment by utilizing the wave struc-
ture function which is approximated by the phase structure
function which is known to be valid not only for the case of
‘‘weak fluctuations’’, but for the case of ‘‘strong fluctua-
tions’’ as well, i.e., when 0:307C2

nk7=6L11=6 > 0:5.
Strictly speaking, given a Kolmogorov spectrum, the

wave structure function, Dw(s1 � s2) appearing in Eq. (6),
has the following form [13]

Dwðs1 � s2Þ ¼ 2q�2
0 ðs1 � s2Þ5=3

; ð7Þ

which differs from Eq. (6) via the power of the vectorial
component. Namely, the power of (s1 � s2) in Eq. (6) is 2
(quadratic), whereas the power in Eq. (7) is 5/3 (five thirds).
It is well known that five thirds power takes into account
not only tip-tilt phase fluctuations but also defocusing
and astigmatism, etc., effects. However, approximating five
thirds to quadratic will not cause appreciable deviations in
terms of the experimentally observed measurements
[14,15]. For this reason, below we continue by employing
the quadratic approximation of the phase structure func-
tion, since this also aids in obtaining simpler and viewable
analytical results. Furthermore a better insight into the
dependency of the intensity on source and propagation
parameters will be gained from an analytic expression that
would not be possible, if the integral in Eq. (5) were to be
evaluated numerically. We do however test the validity of
these statements once more in Section 3. Results and dis-
cussions, and within the range of parameters investigated
we found out that the exact solution with five thirds power
does not yield appreciably different results with the
quadratic approximation, except for the cases where high
accuracy is required.
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