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Importance of RNA secondary structure information for yeast donor
and acceptor splice site predictions by neural networks
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Abstract

Previously, Patterson et al. showed that mRNA structure information aids splice site prediction in human genes [Patterson, D.J., Yasuhara, K.,
Ruzzo, W.L., 2002. Pre-mRNA secondary structure prediction aids splice site prediction. Pac. Symp. Biocomput. 7, 223–234]. Here, we have
attempted to predict splice sites in selected genes ofSaccharomyces cerevisiae using the information obtained from the secondary structures of
corresponding mRNAs. From Ares database, 154 genes were selected and their structures were predicted by Mfold. We selected a 20-nucleotide
window around each site, each containing 4 nucleotides in the exon region. Based on whether the nucleotide is in a stem or not, the conventional
four-letter nucleotide alphabet was translated into an eight-letter alphabet. Two different three-layer-based perceptron neural networks were devised
to predict the 5′ and 3′ splice sites. In case of 5′ site determination, a network with 3 neurons at the hidden layer was chosen, while in case of 3′

site 20 neurons acted more efficiently. Both neural nets were trained applying Levenberg–Marquardt backpropagation method, using half of the
available genes as training inputs and the other half for testing and cross-validations. Sequences with GUs and AGs non-sites were used as negative
controls. The correlation coefficients in the predictions of 5′ and 3′ splice sites using eight-letter alphabet were 98.0% and 69.6%, respectively,
while these values were 89.3% and 57.1% when four-letter alphabet is applied. Our results suggest that considering the secondary structure of
mRNA molecules positively affects both donor and acceptor site predictions by increasing the capacity of neural networks in learning the patterns.
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Nowadays, complete genomic sequences of many eukaryotic
species are available and genome projects of many other organ-
isms are in progress. However, the huge amount of genomic
information is useless unless its coding sequences are detected.
Unfortunately, error-free deciphering of this code has not been
achieved yet.

EST or mRNA sequences of many genes are now available
and it is possible to highlight the corresponding regions on the
genome. For many genes, at least a known homologous pro-

∗ Corresponding author. Tel.: +98 21 4458 0373; fax: +98 21 4458 0399.
E-mail address: sadeghi@nrcgeb.ac.ir (M. Sadeghi).

1 These authors contributed equally to the manuscript.

tein exists in other organisms. Using similarity searches one
may detect these genes. Furthermore, assuming that coding
sequences are more conserved than non-coding ones, it is pos-
sible to align genomic regions to find possible genes (Mathé
et al., 2002). Unfortunately, roughly half of the genes in a
novel genome are not detectable using such similarity-based
approaches. This leads us to use “intrinsic” techniques to find
these genes.

Finding a gene merely from the sequence requires that the
program find the start site, all splice sites and the stop codon.
If we were able to predict all splice sites accurately, we would
be able to perform a highly reliable gene prediction (Pertea et
al., 2001). Thus, improvement of splice site prediction methods
directly enhances the predictive power of gene finders.

A complex of many proteins and small RNA molecules called
spliceosome directs the splicing process and also contributes to
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other cellular processes (Staley and Guthrie, 1998; Rappsilber
et al., 2002). This complex detects and interacts with different
parts of a pre-mRNA molecule such as donor and acceptor splice
sites and branchpoints, via which catalyzes the splicing reaction.
The final aim of splice site prediction programs is to detect the
splicing signals exactly as the spliceosome does.

During the last 20 years, different splice site prediction pro-
grams have been developed (Mathé et al., 2002). These programs
basically rely on the accurate prediction of signal sequences and
they are generally different in the way that they recognize the
dependencies between different positions of a signal sequence.

Since it is generally observed that solely based on the
sequence signals normally used, many splice sites are not
detectable, it is believed that some additional features, not
included in current models, must be essential in identifying the
3′ (and 5′) splice junctions of introns; presence of additional
enhancer/suppressor elements and RNA secondary structure are
of proposed candidates (Lim and Burge, 2001).

A large body of experimental evidence suggests that mRNA
secondary structure can affect RNA splicing (Buratti and
Baralle, 2004). Such observations ledPatterson et al. (2002)to
study the importance of predicted RNA structures in splice site
prediction. In their work, by applying decision tree and support
vector machine classifiers, they have shown that structure met-
rics like the secondary structure free energy and maximum helix
forming probability can enhance the accuracy of prediction of
acceptor sites. They reported that the role of RNA structure is
not as vivid for donor sites.

Herein, we tried to predict RNA secondary structures for
yeast full-length genes (i.e. starting from an AUG and ending in
a stop codon). In contrast,Patterson et al. (2002)predicted the
secondary structure of a very small (100-nucleotide) window
around splice sites. However, this limitation clearly prevents the
identification of potential long-range interaction within mRNA
molecules.Fig. 1 shows the distribution of the linear distances
between each pair of hybridized nucleotides when internal RNA
structures of yeast genes were predicted by Mfold (see Section
2). From this histogram, it is evident that a large fraction of
possible nucleotide interactions (∼41.5%) would be lost if we
consider the hybridizations merely within 100-nucleoide win-

Fig. 1. Distribution of the linear distances of paired nucleotides in predicted
RNA secondary structures of 154 yeast genes.

dows. Although full-length genes may still fold differently from
the real full-length mRNAs, they are clearly better approxi-
mations. Undoubtedly, the computational method is a ballpark
figure itself.

In this work, based on the states of nucleotides within pre-
dicted RNA secondary structures (stems versus loops), we trans-
lated the conventional four-letter alphabet of nucleotides into
an eight-letter alphabet. It was shown that prediction ofboth
donor (5′) and acceptor (3′) sites are significantly improved
when this eight-letter alphabet, instead of the four-letter one,
is employed to train and predict splice signals by neural net-
works. Besides the simplicity of this idea, application of such
an eight-letter alphabet can be easily extended to other splice
site prediction programs. This means that future gene prediction
programs may take advantage of secondary structure prediction
modules.

2. Materials and methods

2.1. Dataset

From Ares database (Grate and Ares, 2002), 154 yeast genes
each containing exactly 1 intron were selected, after remov-
ing all genes with alternative splicing patterns, genes that did
not encode proteins, genes with annotations that showed some
degree of ambiguity, and genes containing introns starting
from the beginning of sequence (i.e. 5′ UTR introns). Each
gene in this dataset was started with an AUG and ended in
a stop codon. From this dataset, 154 pairs of donor–acceptor
site were obtained (the “real” set); in case of each gene, 2
GUs and 2 AGs other than the real sites were selected (the
“decoy” set).

2.2. RNA secondary structure prediction

For all selected genes, the most stable RNA structure was
predicted using Mfold Server (Zuker, 2003). When an mRNA
secondary structure is predicted, it is possible to divide the
nucleotides into two groups: those that take part in the base-
pairing (and are located in Stems) and those that are not base-
paired with other nucleotides (and are placed in Loops). Then,
with the combination of{L, S} structures and the four-letter
{A, U, C, G} nucleotide alphabet, all sequences were translated
to an eight-letter alphabet{AS, US, CS, GS, AL, UL, CL, GL}.
These sequences and also the conventional four-letter sequences
were used as the train and test datasets in the next steps. We also
found the linear distances of all paired bases in the predicted
secondary structures; for example, for nucleotidei base-paired
to nucleotidej, |i − j| was considered as the linear distance of
these two nucleotides.

2.3. Computational procedure

2.3.1. Designing a neural network for 5′ splice site
prediction

The complete structure of the neural network devised for
5′ splice site prediction is based on a three-layer perceptron
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