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Abstract

Previously, Patterson et al. showed that mRNA structure information aids splice site prediction in human genes [Patterson, D.J., Yasuhara, K
Ruzzo, W.L., 2002. Pre-mRNA secondary structure prediction aids splice site prediction. Pac. Symp. Biocomput. 7, 223—-234]. Here, we have
attempted to predict splice sites in selected gene&afharomyces cerevisiae using the information obtained from the secondary structures of
corresponding mRNAs. From Ares database, 154 genes were selected and their structures were predicted by Mfold. We selected a 20-nucleot
window around each site, each containing 4 nucleotides in the exon region. Based on whether the nucleotide is in a stem or not, the convention
four-letter nucleotide alphabet was translated into an eight-letter alphabet. Two different three-layer-based perceptron neural netvesikesdvere d
to predict the 5and 3 splice sites. In case of Site determination, a network with 3 neurons at the hidden layer was chosen, while in case of 3
site 20 neurons acted more efficiently. Both neural nets were trained applying Levenberg—Marquardt backpropagation method, using half of th
available genes as training inputs and the other half for testing and cross-validations. Sequences with GUs and AGs non-sites were used as nega
controls. The correlation coefficients in the predictions 'céuitd 3 splice sites using eight-letter alphabet were 98.0% and 69.6%, respectively,
while these values were 89.3% and 57.1% when four-letter alphabet is applied. Our results suggest that considering the secondary structure
mRNA molecules positively affects both donor and acceptor site predictions by increasing the capacity of neural networks in learning the patterns
© 2005 Elsevier Ltd. All rights reserved.
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1. Introduction tein exists in other organisms. Using similarity searches one
may detect these genes. Furthermore, assuming that coding

Nowadays, complete genomic sequences of many eukaryotgequences are more conserved than non-coding ones, it is pos-
species are available and genome projects of many other orgasible to align genomic regions to find possible gendstpé
isms are in progress. However, the huge amount of genomiet al., 2002. Unfortunately, roughly half of the genes in a
information is useless unless its coding sequences are detectedvel genome are not detectable using such similarity-based
Unfortunately, error-free deciphering of this code has not beeapproaches. This leads us to use “intrinsic” techniques to find
achieved yet. these genes.

EST or mRNA sequences of many genes are now available Finding a gene merely from the sequence requires that the
and it is possible to highlight the corresponding regions on thgrogram find the start site, all splice sites and the stop codon.
genome. For many genes, at least a known homologous préFwe were able to predict all splice sites accurately, we would

be able to perform a highly reliable gene predicti®itea et
al., 200). Thus, improvement of splice site prediction methods
* Corresponding author. Tel.: +98 21 4458 0373; fax: +98 21 4458 0399, GIr€Ctly énhances the predictive power of gene finders.
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other cellular processeSialey and Guthrie, 1998; Rappsilber dows. Although full-length genes may still fold differently from
et al., 2002. This complex detects and interacts with differentthe real full-length mRNAs, they are clearly better approxi-
parts of a pre-mRNA molecule such as donor and acceptor spliaaations. Undoubtedly, the computational method is a ballpark
sites and branchpoints, via which catalyzes the splicing reactiofigure itself.
The final aim of splice site prediction programs is to detect the In this work, based on the states of nucleotides within pre-
splicing signals exactly as the spliceosome does. dicted RNA secondary structures (stems versus loops), we trans-
During the last 20 years, different splice site prediction prolated the conventional four-letter alphabet of nucleotides into
grams have been developadigthé etal., 2002 These programs an eight-letter alphabet. It was shown that predictiorbah
basically rely on the accurate prediction of signal sequences ardbnor (8) and acceptor (3 sites are significantly improved
they are generally different in the way that they recognize thevhen this eight-letter alphabet, instead of the four-letter one,
dependencies between different positions of a signal sequencis. employed to train and predict splice signals by neural net-
Since it is generally observed that solely based on thevorks. Besides the simplicity of this idea, application of such
sequence signals normally used, many splice sites are nah eight-letter alphabet can be easily extended to other splice
detectable, it is believed that some additional features, ndiite prediction programs. This means that future gene prediction
included in current models, must be essential in identifying thgorograms may take advantage of secondary structure prediction
3’ (and B) splice junctions of introns; presence of additional modules.
enhancer/suppressor elements and RNA secondary structure are
of proposed candidatekifn and Burge, 2001l 2. Materials and methods
A large body of experimental evidence suggests that mMRNA
secondary structure can affect RNA splicinBuatti and  2.1. Dataset
Baralle, 2004 Such observations Id@atterson et al. (20020
study the importance of predicted RNA structures in splice site  From Ares databas&tate and Ares, 2002154 yeast genes
prediction. In their work, by applying decision tree and supporteach containing exactly 1 intron were selected, after remov-
vector machine classifiers, they have shown that structure meifag all genes with alternative splicing patterns, genes that did
rics like the secondary structure free energy and maximum helirot encode proteins, genes with annotations that showed some
forming probability can enhance the accuracy of prediction ofdegree of ambiguity, and genes containing introns starting
acceptor sites. They reported that the role of RNA structure ifrom the beginning of sequence (i.€. BTR introns). Each
not as vivid for donor sites. gene in this dataset was started with an AUG and ended in
Herein, we tried to predict RNA secondary structures fora stop codon. From this dataset, 154 pairs of donor—acceptor
yeast full-length genes (i.e. starting from an AUG and ending irsite were obtained (the “real” set); in case of each gene, 2
a stop codon). In contrag®atterson et al. (200redicted the GUs and 2 AGs other than the real sites were selected (the
secondary structure of a very small (100-nucleotide) window'decoy” set).
around splice sites. However, this limitation clearly prevents the
identification of potential long-range interaction within mMRNA 2.2. RNA secondary structure prediction
moleculesFig. 1 shows the distribution of the linear distances
between each pair of hybridized nucleotides when internal RNA  For all selected genes, the most stable RNA structure was
structures of yeast genes were predicted by Mfold (see Sectigiredicted using Mfold ServeZ(ker, 2003. When an mRNA
2). From this histogram, it is evident that a large fraction ofsecondary structure is predicted, it is possible to divide the
possible nucleotide interactions41.5%) would be lost if we nucleotides into two groups: those that take part in the base-
consider the hybridizations merely within 100-nucleoide win-pairing (and are located in Stems) and those that are not base-
paired with other nucleotides (and are placed in Loops). Then,
with the combination ofL, S} structures and the four-letter

o5 {A, U, C, G} nucleotide alphabet, all sequences were translated
to an eight-letter alphabé®s, Us, Cs, Gs, AL, UL, C, G }.
201 These sequences and also the conventional four-letter sequences

were used as the train and test datasets in the next steps. We also
found the linear distances of all paired bases in the predicted
secondary structures; for example, for nucleotitbase-paired

to nucleotidej, |i —j| was considered as the linear distance of
these two nucleotides.
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2.3. Computational procedure
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Fig. 1. Distribution of the linear distances of paired nucleotides in predicted 1he complete structure of the neural network devised for
RNA secondary structures of 154 yeast genes. 5 splice site prediction is based on a three-layer perceptron
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