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Abstract

The channelled spectrum employing polarized light interference is a very convenient method for the study of dispersion of birefrin-
gence. However, while using this method, the absolute order of the polarized light interference fringes cannot be determined easily.
Approximate methods are therefore used to estimate the order. One of the approximations is that the dispersion of birefringence across
neighbouring integer order fringes is negligible. In this paper, we show how this approximation can cause errors. A modification is
reported whereby the error in the determination of absolute fringe order can be reduced using fractional orders instead of integer orders.
The theoretical background for this method supported with computer simulation is presented. An experimental arrangement implement-
ing these modifications is described. This method uses a Constant Deviation Spectrometer (CDS) and a Soleil Babinet Compensator
(SBC).
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Experimental methods for the measurement of refractive
index and birefringence of materials have evolved consider-
ably over the years [1–14]. Highly sophisticated instru-
ments are now available commercially for such
measurements [15,16]. However, the channelled spectrum
(CS) method employing interference of polarized light is
still commonly used in laboratories for the study of bire-
fringence and its dispersion [4]. While this method is
straightforward and simple for most applications, we have
observed certain interesting anomalies while using this
method. In this paper, an analysis of these effects and some
solutions are presented.

In the CS method, a slice of birefringent specimen is
placed between crossed polarizers and illuminated with
light of varying wavelengths. For some wavelengths, the
phase retardations produced between the ordinary and
extraordinary rays is an integral multiple of 2p. The ana-
lyzer extinguishes such rays, and correspondingly dark
bands are produced in the spectrum of emergent light.

Thus, for neighbouring dark bands at wavelengths k0

and k1, having absolute fringe orders P and (P + 1), respec-
tively, we may write

tb0 ¼ Pk0 ð1Þ
tb1 ¼ ðP þ 1Þk1 ð2Þ

where t is the sample thickness and b0 and b1 are the bire-
fringence values at k0 and k1.

Here the fringe of order P is treated as an arbitrary ‘‘ref-
erence fringe’’.
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1.1. Estimation of absolute fringe order

The conventional methods employed for estimation of
the absolute fringe order are:

1.1.1. Method 1
Using an approximation that the dispersion of birefrin-

gence over neighbouring orders is negligible [1], we may
write b0 ¼ b1 ¼ b.

This gives,

P ¼ k1

ðk0 � k1Þ
ð3Þ

We may use pairs of adjacent fringe wavelengths [1] to
calculate corresponding successive values of P.

1.1.2. Method 2

Employing the same approximation as in method1, we
may calculate P from Eq. (3) for just one longest wave-
length pair k0 and k1 and thereafter assign orders P + 1,
P + 2, . . . (P + i) to neighbouring fringes progressively
towards the shorter wavelength side of the spectrum [1].

1.1.3. Method 3

Some authors [1,7] however, extend the no-dispersion
assumption further over several orders of fringes to get a
‘‘better’’ estimate of P, as follows:

tb0 ¼ Pk0 ð4Þ
for the reference fringe and

tb0 ¼ ðp þ iÞki ð5Þ

for n successive fringes.
where i ¼ 1; 2; 3 . . . n.
This gives

P ¼ iki

ðk0 � kiÞ
ð6Þ

P is then averaged over several values of i and approxi-
mated to the nearest integer. Thus, the absolute fringe
order for the reference fringe in the fringe system is esti-
mated. In order to calculate the dispersion of birefringence,
the assumption is then rolled back and the general formula

bi ¼ ðP þ iÞki

ðk0 � kiÞt
ð7Þ

is used, with the estimated value of P.
These three methods have their own relative merits and

demerits when used in a typical experimental situation. In
the CS method, the experimental data are primarily fringe
wavelength values and the crystal thickness.

Method 1 uses each pair of wavelengths to calculate
fringe order independently. Though this method makes
use of several experimental fringe wavelength values, it is
sensitive to experimental errors (particularly random
errors) in determining these wavelengths. This method is

therefore not very effective for the study of dispersion of
birefringence.

In method 2, the order calculation is done for just one

pair of wavelengths as reference, as explained in Section
1.1.2. Thus, any experimental errors occurring in this mea-
surement would get carried forward to the subsequent
orders, which are calculated based on this reference.

Method 3 benefits from the law of averages. All the data
points are used to calculate the reference order. This mini-
mizes the effect of random errors in the experimental deter-
mination of k.

However, if the dispersion of birefringence were large, a
systematic error would creep in. This is because the closest
pair would give one order while the farthest pair would give
a significantly different order.

In this paper, these three methods are applied first to a
typical set of experimental results. They are then applied
to simulated fringe systems and the results are analysed.
Particular errors associated with the simplifying assump-
tions mentioned earlier are discussed. Finally, some exper-
imental work around solutions for minimizing these errors
in terms of non-integer fringe orders are presented.

2. Materials and methods

Single crystals of potassium acid phthalate (KAP) were
grown in our laboratory by the slow evaporation solution
growth technique with triple distilled water as the solvent.
Merck AR Grade KAP was used.

The experimental set up that was used to study the bire-
fringence of these materials using the CS method is shown
in Fig. 1. A constant deviation spectrometer (CDS) was
first calibrated using standard procedures. A 500 W tung-
sten-halogen lamp was then used to illuminate the slit of
the CDS. The CDS has an additional pinhole placed at
the focal plane of the eyepiece at the exit side. This provides
a collimated beam for studying the samples. A crystal plate
(C), was mounted on an upright capable of rotating it in a
vertical plane and placed between the polarizer (P) and the
analyzer (A). The crystal was oriented with the slow axis at
45� to the axis of polarizer. Finally, the light emerging from
the analyzer was examined through the microscope (M).
The advantage of using a microscope is that interference
can be observed even if the crystal area is as small as
0.004 m2.

Fig. 1. Experimental setup for the study of dispersion of birefringence M,
microscope; A, analyzer; C, crystal sample; P, polarizer; CDS, constant
deviation spectrometer and HL, halogen lamp.
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