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Abstract

An analytical method known for phase filters is applied to amplitude filters. The method is based on the use of a series of figures of
merit, such as the axial and the transverse gains and the Strehl ratio, which characterize the point-spread-function distribution near the
focal region. As a practical implementation, we have applied this method to analytically design the superresolving three-zone amplitude
filters and obtained a complete reshaping of the spatial intensity distribution. Regions of the radii of the filters with the transverse, axial
or three-dimensional superresolutions are shown analytically. The maximum possible transverse or axial gain is derived for the certain
Strehl ratio.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

The intensity distribution in the three-dimensional
image of a point source provided by an imaging system,
i.e., the intensity point-spread-function (PSF) of the sys-
tem, can be controlled by filters. Superresolving filters have
considerable significance in many applications, such as the
optical data storage [1,2], the confocal scanning micros-
copy [3], and laser free-space communications [4]. Super-
resolution was proposed in 1952 by Toraldo di Francia
[5]. Some superresolving filters are based on phase-only
[6–10] or on hybrid amplitude-phase profiles [11,12] while
others use amplitude-only profiles. In studies of superreso-
lution by discrete-amplitude [13–18] and continuous-ampli-
tude filters [19–21], the binary amplitude filters composed
of transparent and opaque zones are more frequently used
because of their proper performance and simplicity. Fur-
thermore, it is easier to manufacture them for mass produc-

tion by using available diffractive optics production
methods and replication technologies. Some examples of
annular binary amplitude filters are the three-zone filters
which are designed to increase the axial [13–16] and trans-
verse resolutions [17], or three-dimensional (3D) resolution
[18].

Recently, Canales et al. introduced a fast and simple
method for the analytical design of superresolving binary
phase-only pupil filters [7]. It is of great interest to design
pupil filters whose parameters are analytically derived from
the figures of merit desired for the light intensity distribu-
tion. In this paper we apply this method of the figures of
merit to the analytical design of the superresolving binary
amplitude filters.

2. Basic theory for filter design

Let us consider a real pupil function P(q) where q is the
normalized radial coordinate over the pupil plane. For a
converging monochromatic spherical wave front passing
through the center of the pupil, the normalized 3D
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intensity distribution, i.e., PSF, in the focal region can be
written as

Iðv; uÞ ¼ 2

Z 1

0

P ðqÞJ 0ðvqÞ expðiuq2=2Þqdq

����
����
2

; ð1Þ

where v and u are radial and axial dimensionless optical
coordinates with origin at the geometrical focus, and J0 is
the Bessel function of the first kind of order zero.

According to the theories of Sheppard and Hegedus
[13], the transverse and axial intensity distribution pro-
vided by this filter is expanded in a Taylor series near the
geometric focus. Within the second-order approximation,
I(v, 0) and I(0, u) can be expressed as:

Iðv; 0Þ ¼ I2
0 �

1

2
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Ið0; uÞ ¼ I2
0 �

1

4
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where In is the nth moment of the pupil function, defined as

In ¼ 2

Z 1

0

P ðqÞq2nþ1 dq: ð4Þ

From Eqs. (2) or (3) an expression for the Strehl ratio can
be obtained:

S ¼ I2
0: ð5Þ

The transverse and axial gains, which are defined as the ra-
tio between the squared widths of the parabolic approxi-
mation of PSF without and with the pupil filter, are
given respectively by

GT ¼ 2I1=I0; ð6Þ
GA ¼ 12ðI2I0 � I2

1Þ=I2
0: ð7Þ

For three-zone binary amplitude filters, the pupil func-
tion can be expressed as

P ðqÞ ¼
1; 0 6 q 6 a

0; a < q 6 b

1; b < q 6 1

8><
>: ; ð8Þ

where the radii of three-zones are a, b, and 1, respectively.
Substituting Eq. (8) into (4) and then substituting into Eqs.
(5)–(7), we obtain

S ¼ ða2 � b2 þ 1Þ2; ð9Þ

GT ¼
1þ a4 � b4

1þ a2 � b2
; ð10Þ

GA ¼
4ð1þ a6 � b6Þð1þ a2 � b2Þ � 3ð1þ a4 � b4Þ2

ð1þ a2 � b2Þ2
: ð11Þ

From these expressions of the figures of merit above, the
radii of the suprresolving filters can be obtained by using
the analytical method. There are three cases which are ana-
lyzed in the following sections. The first case is that a cer-
tain transverse gain is desired while maintaining an
acceptable Strehl ratio. The design of the filter parameters
in such case is shown in Section 3. The second case is that a

certain axial gain is desired while maintaining an accept-
able Strehl ratio, which is analyzed in Section 4. The third
case is that the achievement of the 3D superresolution is
studied in Section 5.

3. Filter design from GT and S

An important case is the derivation of the filter radii
from GT and S because transverse superresolution is of
great interest in many different practical applications such
as the surface microscopy and the optical storage. In such
case, the values of the radii (a,b) can be solved from Eqs.
(9) and (10), as

a ¼
ffiffiffi
S
p
ð2� GTÞ � S

2ð1�
ffiffiffi
S
p
Þ

" #1=2

; ð12Þ
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S
p
ð2þ GTÞ

2ð1�
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S
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¼ ½a2 þ 1�
ffiffiffi
S
p
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It is well known that any attempt to superresolve an
object will lead to the decrease of the Strehl ratio. A certain
level of Strehl ratio is required for the optical recording and
the optical microscopy. In optical readout a certain reduc-
tion in Strehl ratio is acceptable. For applications of the
optical storage the minimum acceptable value of Strehl
ratio is generally in the range of 0.4–0.5, whereas for the
confocal scanning microscopy this range of the value is
generally from 0.2 to 0.3. So, the Strehel ratio must be con-
sidered for designing a superresolving filter. To this aim, we
express the transverse gain as a function of the Strehl ratio,
giving

GT ¼ 2� 2a2ð1�
ffiffiffi
S
p
Þ þ Sffiffiffi

S
p : ð14Þ

If we fix a certain value of Strehl ratio S in Eq. (14) and let

dGT

da
¼ 0; ð15Þ

we can easily find that when a = 0 the maximum possible
transverse gain is attained as

Gm
T ¼ 2�

ffiffiffi
S
p

: ð16Þ
It is noted that a = 0 merely means for the two-zone ampli-
tude. So, we can conclude that two-zone amplitude filters
are the best option for the transverse superresolution.

The regions of values of the radii a and b which give the
transverse superresolution can be obtained from Eqs. (9)
and (10), by setting GT(a,b) P 1:

GTða; bÞP 1()
a 6
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Fig. 1 shows the region of transverse superresolution,
defined by Eq. (17). Fig. 2 shows the transverse gain as a
function of the Strehl ratio for different values of radius
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