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Abstract

We explain the polarization dependence of four wave mixing (FWM) quantum beats for semiconductors as essentially due to the spin
phase correlations of photo-excited electrons, rather than to Coulomb interaction between the electrons. A theoretical analysis is given
within the framework of optical Bloch equations for the light–semiconductor interactions and the Luttinger–Kohn model for the band
structure. Residual Coulomb interactions between charge carriers are ignored. The results suggest that the polarization dependence of
FWM quantum beats is a purely coherent effect of dual photon excitations, rather than, e.g., exciton–exciton Coulomb interaction. We
show that the coherence transfer between the excited states is responsible for the FWM in a configuration with orthogonally polarized
pump and probe.
� 2007 Elsevier B.V. All rights reserved.

PACS: 42.50.Md; 78.66.Fd; 42.65.�k

Keywords: Optical transient phenomena; Optical properties of semiconductors; Nonlinear optics

1. Introduction

Polarization dependent four wave mixing (FWM) quan-
tum beats [1–11] have been observed after simultaneous
excitations of two optical transitions, associated with
heavy-hole (HH) and light-hole (LH). The signal magni-
tude and its beat phase depend on the relative linear polar-
ization of pump and probe. This phenomenon has been
analyzed by applying semiconductor Bloch equations
[12,14,13] (SBE) for excitations in a six-band model by
broad spectrum pump and probe pulses [1,2]. However
the theoretical investigations predicted, in contradiction

with experimental observations, identical FWM intensities
for the two polarization configurations: pump and probe
having either parallel or perpendicular linear polarizations.
Since then, several attempts have been made to theoreti-
cally explain the observed phenomena. The bi-exciton
model, with Coulomb interaction between the excitons as
the essential ingredient, has been claimed to give a success-
ful explanation [5,6,3,7–11].

In this work, an alternative explanation, within the opti-
cal Bloch equation (OBE) formalism, is presented, in which
the spin phase correlations of the excited electrons are
emphasized, but residual Coulomb interaction between
excited carriers is neglected. We suggest that the polariza-
tion dependence of FWM quantum beats is a purely coher-
ent light-matter interaction effect, rather than due to
electron Coulomb interaction, e.g. in a bi-exciton state.
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We assume that the electrons in semiconductors can be
completely described within a space with six states: j1/
2,±1/2i, j3/2,±1/2i, and j3/2,±3/2i. The spatial properties
of these states are defined in the conventional way [13] as

j1=2; 1=2i ¼ jS "i
j1=2;�1=2i ¼ jS #i
j3=2; 3=2i ¼ �

ffiffiffiffiffiffiffiffi
1=2

p
ðjX "i þ ijY "iÞ

j3=2; 1=2i ¼ �
ffiffiffiffiffiffiffiffi
1=6

p
ðjX #i þ ijY #iÞ þ

ffiffiffiffiffiffiffiffi
2=3

p
jZ "i

j3=2;�1=2i ¼
ffiffiffiffiffiffiffiffi
1=6

p
ðjX "i � ijY "iÞ þ

ffiffiffiffiffiffiffiffi
2=3

p
jZ #i

j3=2;�3=2i ¼
ffiffiffiffiffiffiffiffi
1=2

p
ðjX #i � ijY #iÞ:

ð1Þ

The band structure, without split-off bands, of III–V semi-
conductors is denoted with jc1i, jc2i, jh1i, jh2i, jl1i, and
jl2i, with c, h and l standing for conduction, HH, and
LH bands, which are twofold degenerate. For small Bloch
momentum ~k, we approximate the eigenstates of jc1i, jc2i
by just the basis states j1/2,±1/2i for conduction bands.
For valence bands the wave functions are more compli-
cated. They can be written in a compact matrix multiplica-
tion form as [15]
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with Rh = Hh � Eh, Rl = � Hl + El, and
Ni = jRij2 + jcj2 + jbj2, i = h, l. Here, we use the conven-
tional notations [13], and �h � 1 is assumed in the following:
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As is well known, the optical transitions, for a given~k, be-
tween the conduction and valence bands in direct bandgap
III–V semiconductors have different energies �h and �l for
HH and LH bands, respectively. Optical transitions between
HH and LH bands are forbidden. Meanwhile, the optical
transitions jhi ! jci and jli ! jci are assumed to be indepen-
dent of each other. This means that the transitions jhi ! jci
involve the electronic states jhi and jci only, independent of
the electronic states jli. Therefore, with respect to jhi ! jci
transitions, we have the initial state of this excitation

jIih ¼ ayh1ayh2j0hi; ð4aÞ

with j 0hi �j 0h10h20c10c2i, and the initial state

jIil ¼ ayl1ayl2j0li; ð4bÞ

for the transition jli ! jci, with j 0li �j 0l10l20c10c2i.
Only resonant optical transitions will be considered.

Therefore, the photon energy ⁄x0 is well defined for each

band and wave vector k0. We shall therefore omit in the
following the wave vector~k as the subscript in the notation,
e.g. ayh1 � ay

h1;~k
.

2. Model

We specifically investigate one type of the FWM quan-
tum beats, the K three-level quantum beats [16], in which
the excited state is involved in one excitation by dual pho-
tons, with different frequencies. This should not be under-
stood as two, one by one, excitations giving two excited
states. Analogously, for the case of a semiconductor, the
energies of the dual photons are just the resonant energies
of the HH and LH electronic states with the same wave
vector. The excited state of the dual photons excitation is
composed of two parts, one from the initial state jIih of
the jhi ! jci transitions, the other from the initial state jIil
of the jli ! jci transitions.

Because the exact forms of the excited state depend on
the polarization of the incident light, we consider here for
the sake of clarity the case of linearly polarized light, polar-
ized in the x–y plane. Therewith the incident laser field EðtÞ
propagating in z direction, along the chosen quantization
direction. By mathematical transformation of these results,
one can obtain those for the circularly polarized case.

First we consider the dipole transition between the basis
states in Eq. (1). Note that the z components of right hand
side of Eq. (6) do not contribute, since the light polariza-
tion lies in the x–y plane. With hSjxjXi = M and due to
the symmetry of the S state, the x–y plane components
of the dipole matrix elements are
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Thereby, with the wave functions of valence bands in Eq.
(2), the optical transitions between the conduction bands
and valence bands can be written in units of M as

hc1j~r?jh1i ¼ �ubðx̂þ iŷÞ
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hc2j~r?jl2i ¼ �wcðx̂þ iŷÞ � uRlðx̂� iŷÞ;
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