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Abstract

Calibration of the relationship between height and phase is of uttermost importance to perform accurate 3D measurements in phase
measurement profilometry. This work reports a different approach to this problem by first looking at the analytical expression for this
relationship and determining the regime spanned by the fringe analysis method. The conclusions thus ascertained, amply justify confront-
ing the analytical expression with a simple normalization procedure of the experimental data, with a remarkable matching between both
results. In light of this, a linear calibration procedure with just one plane is proposed and verified experimentally.
� 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Accurate non-contact three-dimensional measurements
have drastically influenced physical sensing applications
in many areas of knowledge, from industrial production
to health care, artwork inspection, robot vision and many
other engineering or science activities.

Phase measurement profilometry (PMP), be it phase
shift [1] or Fourier transform [2–5], is certainly amongst
the most successful three-dimensional active vision tech-
niques available today.

These procedures calculate phase shift mappings of sur-
face deformations or profile-to-reference differences and
rely, at some point, on the translation of the obtained
phase map to either a dislocation or a height measurement.
The relation between phase and height has thus been the
subject of a large number of works over the years, due to
its impact on the overall method’s accuracy. Both analyti-
cal [3,6–9] and empirical [10–14] approaches were reported

to present days, although an explicit comparison of both
trends has not yet been published, to the authors
knowledge.

Analytical methods, simple to apply as they may be, rely
on a precise determination of the camera and projector
locations and do not explicitly account for the distortions
of both projection and imaging optics. The latter can
become a major issue, in those cases where the aberrations
are either unidentified or known to severely impact the final
result. The former argument can also be decisive to
final accuracy, when even the smallest change between pro-
jector and camera positions can result in erroneous
measurements.

On the other hand, most of the phase-to-depth empirical
calibration methods proposed to date interpolate the
results from a set of reference plane dislocations, for each
of which a phase map has been calculated. The accuracy
of this procedure depends on the precision of the travelling
stage that carries the reference plane and is fairly awkward
to manoeuvre outside of laboratory installations.

The work depicted herein takes a different view of this
issue by looking at the analytical phase-to-depth expression
and determining the region of interest along that curve.
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The choice of a linear calibration procedure is then
strongly supported by the evidence that, for the most part
of the plausible working regime, this relation is indeed a
linear one. The striking match of the experimental and
the analytical results is but another confirmation of these
findings, which ultimately led to devising a single image
calibration procedure, described and analyzed at the end
of the note.

2. Analytical phase-to-depth relation

Fig. 1 depicts a typical optical crossed axis phase mea-
surement profilometry setup. A fringe pattern with a
known spatial frequency is projected onto the object under
test by projector P and the image is captured at camera C.
Ep and Ec refer to the nodal points of the projection and
imaging systems, respectively. The projection and imaging
systems optical axis cross at point O on a reference plane
R0. L0 is the distance from the camera – projector plane
to the reference plane, d is the distance between centers
of projection, h is the angle between projector and camera
and s represents the intersection of EpB with the object
surface.

EtD represents a telecentric projection through s, ade-
quately described by

gTðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½2pf0x� ð1Þ
where a(x,y) and b(x,y) represent non-uniform distribu-
tions of reflectivity on the surface of the object and f0 is
the fundamental frequency of the observed grating image.

In the non-telecentric case, the pattern on the reference
plane can then be described by

g0ðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½2pf0xþ /0ðxÞ� ð2Þ
with

/0ðxÞ ¼ 2pf0BD ð3Þ
When the object is in place, the ray from Ep that strikes the
reference plane at B is seen from the camera as coming
from A and the phase expression for h(x,y) 5 0 is therefore

/ðx; yÞ ¼ 2pf0AD ð4Þ
The fringe pattern on the object surface is expressed by

gsðx; yÞ ¼ aðx; yÞ þ bðx; yÞ cos½2pf0xþ /ðx; yÞ� ð5Þ
and the phase difference between reference plane and object
surface is then

D/ðx; yÞ ¼ 2pf0ðAD� BDÞ ¼ 2pf0AB ð6Þ
As shown in [3], this phase difference is completely recov-
ered as

D/ðx; yÞ ¼ Imflog½Gsðu; vÞG�0ðu; vÞ�g ð7Þ

where G(u,v) are the Fourier Transforms of the fringe pat-
terns and * denotes complex conjugation.

In order to establish a relation between phase and height
one uses the fact triangles EpsEc and AsB are similar

AB ¼ dh
L0 � h

ð8Þ

so

D/ðx; yÞ ¼ 2pf0AB ) hðx; yÞ ¼ L0D/ðx; yÞ
D/ðx; yÞ þ 2pf0d

ð9Þ

A thorough analysis in [9] indicates h(x,y) is in fact a func-
tion of the lateral coordinate x and the angle between pro-
jector and camera h as

hðx; yÞ ¼ L0

2pL2
0d cos h

P 0D/ðx; yÞðL0 þ x cos h sin hÞ2
� d cos h sin h

L0 þ x cos h sin h
þ 1

ð10Þ
with

P 0 ¼
1

f0

¼ P
cos h

ð11Þ

P being the projected grating period.
Now, an analysis of either expression for h(x,y) will

reveal they are not that much different for a plausible appli-
cation regime. Reversing the last function for h(x,y) above
gives

Fig. 1. Fourier transform profilometry crossed axis setup.

D/ ¼ 2hpL2
0d cos h

P 0ðhðdL0 cos h sin hþ dx cos2 h sin2 h� L2
0Þ þ L3

0 þ ðL0 � hÞx cos h sin hð2L0 þ x cos h sin hÞÞ
ð12Þ
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