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Halil T. Eyyuboğlu a,*, Yahya Baykal a,1, Emre Sermutlu b,2
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Abstract

It is shown that a general shaped laser beam will eventually approach a Gaussian average intensity profile after propagation in tur-
bulent atmosphere. In our formulation, source field at the exit plane of the laser is taken as the product of arbitrary functions of source
transverse coordinates with Gaussian exponential modulations. Following the expansion of the arbitrary functions in terms of Hermite
polynomials, the average receiver intensity expression is derived using the extended Huygens–Fresnel principle and the conditions for the
intensity profile to assume a Gaussian shape are stated. The results are illustrated by simulating various source field distributions.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Propagation characteristics of various types of laser
beam profiles in free space are being investigated. In this
context, the general class of Hermite-sinusoidal-Gaussian
laser beams [1,2], and the subclasses such as cosh-Gaussian
[3], elegant Hermite-cosh-Gaussian [4], Hermite-cosine-
Gaussian [5], and off-axial Hermite-cosh-Gaussian [6] laser
beams are studied in detail. Numerous other types like
flat-topped multi-Gaussian [7] and Bessel–Gauss and
Laguerre–Gauss laser beams [8] are also reported. During
our recent works [9–13], in which we examined the propa-

gation characteristics of various special forms of the
general Hermite-sinusoidal-Gaussian and higher order
annular laser beams in atmospheric turbulence, we con-
stantly observed that after having propagated, these beams
have a tendency to approach Gaussian shape, irrespective
of the source field excitation. The purpose of this article
is to explore whether such an attribution is also shared
by a general shaped laser beam, and if so, under which
conditions.

Concerning the subject of eventual irradiance pattern
in propagation, some studies appeared in the literature,
particularly at the beginning of 1970s, with majority of
them being based on simple source excitation types. For
instance, the formulation of a beam remaining Gaussian
during propagation in a turbulent medium, given a
Gaussian initial excitation, and the associated conditions,
were stated by Prokhorov et al. [14]. On the other hand,
Whitman and Beran [15] found that, with certain assump-
tions, the intensity profile of an arbitrary cylindrically
symmetric source beam would be Gaussian in the limit
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of propagation length being extended to infinity. Lutomir-
ski and Yura [16] presented the case of plane wave in a
circular aperture (essentially flat topped beam), deriving
the profile shaping functions applicable to different prop-
agation ranges.

For our present analysis, the source field expression is
taken as the product of two independent arbitrary polyno-
mial functions of source transverse coordinates x and y,
accompanied by the two separate Gaussian exponentials
to ensure the physical realization of the beam type used
in this paper. Consequently, the beam profile is configured
with complete x�y asymmetry and general shaping, as a
result making our model the most general case of previous
studies.

2. Formulation

We stipulate a propagation geometry consisting of
source and receiver planes both positioned in a perpendic-
ular manner to the axis of propagation, along which turbu-
lent atmosphere exists. In this setup, a laser emitting a
beam of general shape is placed around the origin of the
exit, i.e., source plane. For the general beam to convey a
finite amount of energy and thus to be realizable, the shap-
ing functions are assumed square integrable and an expo-
nential Gaussian windowing profile is superimposed on
this general pattern. Based on the conventions of our pre-
vious studies [9–13] and assuming a collimated beam,
where the radius of phase front goes to infinity, the field
at the exit plane of the laser (z = 0) will then be given by

uðs; z ¼ 0Þ ¼ expð�0:5s2
x=a

2
sxÞf ðaxsxÞ expð�0:5s2

y=a
2
syÞgðaysyÞ

ð1Þ

where s = (sx, sy) is the transverse coordinate at the laser
exit plane, z is the propagation axis, asx and ax, asy, and
ay are the factors denoting the scaling of the beam related
to source dimensions in x, y directions, respectively, and f

and g are arbitrary functions such that
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Note that the exponentials appearing in Eq. (2) are the
weight functions having no association to the exponentials
of Eq. (1). Under the conditions given in Eq. (2), f and g

can be expanded in terms of Hermite polynomials as

f ðaxsxÞ ¼
X1
n¼0

cnH nðaxsxÞ ð3Þ
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where
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In Eqs. (5) and (6), ! means the factorial notation. The
intensity at the source plane is obtained from

IðsÞ ¼ uðs; z ¼ 0Þ½uðs; z ¼ 0Þ�� ð7Þ
At this stage, for completeness and clarity, we wish to

specify the status of Eq. (1) in relation to our previous for-
mulations. In our earlier works [9–13], the shaping func-
tions, f and g used to be single Hermite polynomials,
whereas in this present study, they are arbitrary functions
that may be chosen at liberty bearing in mind the condition
governed by Eq. (2). Quite a broad range of functions are
able to satisfy Eq. (2) and there exist orthogonal polynomi-
als other than Hermite polynomials for expansions of f and
g functions. [17]. The current study employs Hermite poly-
nomials for merely mathematical convenience.

Applying the extended Huygens–Fresnel principle for
turbulent atmosphere, the average intensity at a propaga-
tion distance z = L is formulated as [9–13]

hIðp; LÞi ¼ k2=ð2pLÞ2
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�1
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�1
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�1
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� expfik½ðp� s1Þ2 � ðp� s2Þ2�=ð2LÞg
� hexp½wðs1; pÞ þ w�ðs2; pÞ�i ð8Þ

Via the integral in Eq. (8), Huygens–Fresnel principle
serves to find the intensity on the receiver plane, by apply-
ing the response of the propagation environment on the
field of excitation. In this sense, the exponential appearing
in the second line of Eq. (8) expresses the diffraction that
the propagating beam is subjected to, which is also com-
mon to free space propagation [18]. The third line of Eq.
(8), on the other hand, describes the effects of turbulence
in propagation. Turning to the definitions of particular
terms in Eq. (8); p = (px,py) denotes the transverse coordi-
nate at the receiver plane (z = L), i ¼

ffiffiffiffiffiffiffi
�1
p

, k is the wave
number, w(s,p) is the solution to Rytov method represent-
ing the random part of the complex phase of a spherical
wave propagating from the source point (s,z = 0) to the re-
ceiver point (p,z = L), and h i indicates the ensemble aver-
age over the turbulent medium statistics, and for the last
line of Eq. (8) is given by

hexp½wðs1; pÞ þ w�ðs2; pÞ�i ¼ exp½�0:5Dwðs1 � s2Þ�

ffi exp½�q�2
0 ðs1 � s2Þ2� ð9Þ

where Dw(s1 � s2) refers to the wave structure function, and
q0 ¼ ð0:545C2

nk2LÞ�3=5 is the coherence length of a spherical
wave propagating in the turbulent medium, C2

n is the struc-
ture constant. The setting in Eq. (9) and the subsequent
definition of q0 imply that we have approximated the actual
five thirds power of (s1 � s2) to quadratic, additionally
Kolmogorov spectrum has been employed [19]. Substitut-
ing Eqs. (1), (3), (4), and (9) into Eq. (8) and using Eq.
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