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Abstract

We present a method to characterize the polarization state of a light field in the continuous-variable regime. Instead
of using the abstract formalism of SU(2) quasidistributions, we model polarization as the superposition of two har-
monic oscillators of the same angular frequency along two orthogonal axes, much in the classical way of dealing with
this variable. By describing each oscillator by an s-parametrized quasidistribution, we derive in a consistent way the
final function for the polarization. We compare with previous approaches and show how this formalism works in some
relevant examples.
� 2005 Elsevier B.V. All rights reserved.
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1. Introduction

Polarization is a fundamental property of light,
both in the quantum and in the classical domain.
Although in quantum optics polarization has been
mainly examined in the single-photon regime [1–7],
different schemes have been proposed [8,9] and
experimentally implemented [10,11] to characterize
the continuous-variable limit of the quantum

Stokes parameters. We stress that these continu-
ous-variable polarization states can be carried by
a bright laser beam, providing high bandwidth
capabilities and therefore faster signal transfer
rates than single-photon systems. In addition, they
retain the advantage of not requiring the universal
local oscillator necessary for other proposed con-
tinuous-variable quantum networks.

Since Wigner�s seminal paper [12], and the
remarkable contributions of Moyal [13], Stratono-
vich [14] and Berezin [15], it seems indisputable
that phase-space methods, based on using quasi-
distributions that reflect the noncommutatibility
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of quantum observables, constitute a valuable tool
in examining continuous variables in quantum
optics [16–18].

In particular, these methods have had great suc-
cess in analyzing one-mode fields; i.e., Heisenberg–
Weyl quasidistributions representing the quantum
dynamics in the flat q–p (or, equivalently, a–a*)
space. Although not so popular in the quantum-
optics community, spinlike systems, with the
sphere S2 as phase space, have been discussed at
length in this framework [19–27]. The resulting
functions, naturally related to the SU(2) dynami-
cal group, have been used to visualize, e.g., non-
classical properties of a collection of two-level
atoms [28].

Since the Stokes operators can be formally iden-
tified with an angular momentum [29–32], one may
naively expect a direct translation of these SU(2)
quasidistributions to the problem of polarization.
However, this is not the case, mainly because they
act on different types of Hilbert spaces [33]. We
can then conclude that the problem of an adequate
quasiclassical description of polarization of light is
still an open question [34,35].

The Stokes operators are a particular case of
the Schwinger map [36], with two kinematically
independent oscillators. In this spirit, it has been
recently shown that the Stokes operators are the
constants of motion of the two-dimensional isotro-
pic harmonic oscillator [37]. This reflects the fact
that the polarization of a classical field can be ade-
quately viewed as the Lissajous figure traced out
by the end of the electric vector of a monochro-
matic field [38]. In sharp contrast, in quantum op-
tics the probability distribution for the electric field
can be very far from having an elliptical form
[39,40].

We wish to investigate this point from the per-
spective of quasidistributions. We show that one
can start from the s-ordered quasidistributions
from two kinematically independent oscillators:
by eliminating an unessential common phase, we
get well-behaved quasidistributions on the Poin-
caré sphere. We note in passing that this is the
way in which polarization distributions are ob-
tained in classical optics [41]. We apply the result-
ing family of polarization quasidistributions to
some relevant states, and conclude that they

constitute an appropriate tool to deal with such
a basic variable.

2. Phase-space representation of a harmonic

oscillator

To keep the discussion as self-contained as
possible, we first briefly summarize the essential
ingredients of phase-space functions for a har-
monic oscillator that we shall need for our
purposes.

In the Hilbert space H, the state of the system
is fully represented by its density operator .̂. In the
phase-space formalism, .̂ is mapped by a family of
functions (quasidistributions) W(s)(a) onto the
classical phase space X (a 2 X). This map is usually
implemented by the generalized Weyl rule [26]

W ðsÞðaÞ ¼ Tr½.̂ŵðsÞðaÞ�; ð1Þ
where the generating kernel ŵðsÞðaÞ fulfill the
properties

ŵðsÞðaÞ ¼ ½ŵðsÞðaÞ�y;
Z
X
dlðaÞŵðsÞðaÞ ¼ 1̂. ð2Þ

The index s that labels functions in the family is re-
lated to the s ordering. The values +1, �1, and 0
correspond to the normal, antinormal, and sym-
metric ordering, respectively, or equivalently to
the P, Q, and W functions. We stress that these
quasidistributions can be determined in practice
by using simple and efficient experimental proce-
dures [42–47]. Moreover, they provide a simple
measure of the nonclassical behavior of quantum
states [48–51].

Let us now turn to the outstanding case of a
harmonic oscillator described by annihilation and
creation operators â and ây, which obey the canon-
ical commutation relation

½â; ây� ¼ 1̂. ð3Þ
The phase space is the complex plane C and the
invariant measure is dl(a) = d2a/p. The operator

D̂ðaÞ ¼ expðaây � a�âÞ ð4Þ
is the standard displacement operator in the com-
plex plane a and leads to introduce the standard
coherent states as
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