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Abstract

Phase space analysis of light refraction in optical systems consisting of slabs or thin lenses from either metamaterials with

negative refractive indices or common materials is performed with the aim of finding the conditions of perfect imaging for

metamaterial-based optical systems. The analysis in the paraxial approximation uses ABCD matrices, whereas full ray tracing is

employed in the non-paraxial case. The phase space analysis reveals that the ideality of planar metamaterial lenses only occurs when

the absolute value of the refractive index in metamaterials is the same as in the surrounding medium.

# 2014 Elsevier B.V. All rights reserved.
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1. Introduction

Metamaterials are artificial materials with dimen-

sions much smaller than the excitation wavelength

which can, in certain conditions, have an effective

negative index of refraction n. Throughout this paper we

restrict the meaning of metamaterials to this particular

case, of n < 0. Among their unusual properties,

metamaterials can cloak optical signals and can be

used to fabricate planar superlenses that overcome the

common diffraction limit. There are already an

impressive number of papers dealing with several

aspects of light propagation through metamaterials, the

majority of them revealing significant differences with

respect to propagation through media with a positive

refractive index. For recent reviews on metamaterials,

see Refs. [1–7] and the references therein.

The aim of this paper is to explore another method to

compare optical systems containing metamaterials with

n < 0 with systems containing materials with n > 0.

More precisely, we develop a classical phase space

treatment for light propagation [8,9] through metama-

terial-based slabs and thin lenses and compare the

outcome with the known results for similar optical

systems containing common materials. The paraxial

approximation is first used, but light propagation in the

nonparaxial case is later studied to investigate the

performances of planar metamaterial lenses. In parti-

cular, it is found that these planar lenses are ideal with

respect to spherical aberrations, for example, as long as

the absolute value of the refractive indices of the

metamaterial and the surrounding medium are the same.

In all other cases spherical aberrations are present also

in planar metamaterial lenses. Moreover, evanescent

propagation through planar lenses is described in phase

space, the amplification of these waves being modeled

through non-unit determinant matrices. Throughout the
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paper we consider propagation of coherent light beams

along the z direction chosen as optical axis and restrict

our treatment to only one transverse coordinate, x, for

reasons of graphical representation. In this case, the

phase space is two-dimensional and spanned by the

canonically conjugated variables, x and p. (In the

general case, with two transverse coordinates, the phase

space is four-dimensional and hence impossible to

represent.) Light propagation through anisotropic

media, especially through anisotropic metamaterials,

can be accounted for either considering the complete

four-dimensional phase space or treating separately, in a

two-dimensional phase space, the propagation in the

two transverse directions.

2. Light propagation in phase space

The phase space representation in optics is widely

used in connection with the Hamiltonian formalism

[10], in which the trajectory of a ray in the (x,z) plane

through a medium with refractive index nðxÞ is

described by the equations

@x

@z
¼ @H

@ p
;

@ p

@z
¼ � @H

@x
; (1)

where the geometrical optical Hamiltonian is

Hðx; pÞ ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2ðxÞ � p2

p
: (2)

In the paraxial approximation, when both x and the

propagation angle u (the angle between the ray and the z

axis) are small enough, p ¼ nu.

In geometrical optics, a ray with a ray vector (x,p)T

(the superscript T indicates transposition) at a plane

z = const. is represented in phase space by a point, and a

light source is regarded as a bundle of independent rays

with an associated closed area in phase space.

According to the Liouville theorem [11], this area

remains constant under canonical transformations. In

particular, the evolution of a ray in the paraxial

approximation between z = const. planes can be

expressed in a matrix form:
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where o and i label the value of parameters at output and

input planes, respectively, and the unit-determinant

matrix M is symplectic [11]. In the two-dimensional

phase space considered here the matrix elements

A; B; C; D are numbers. More precisely, for propagation

along a distance d through a medium with refractive

index n, A = D = 1, C = 0, B ¼ d=n and for a thin lens

A = D = 1, B = 0, C ¼ �1= f , the total matrix of an

optical system being obtained by multiplying the ma-

trices of each component of the system.

In wave optics, light beams can be represented in

phase space by a number of distribution functions; we

choose to represent them by means of the Wigner

distribution function (WDF) [12,13] due to the property

that its evolution through first-order (paraxial) optical

systems is simply related to the elements of M [8]:

Woðx; pÞ ¼ WiðDx � B p; �Cx þ A pÞ: (4)

The WDF of a scalar, coherent light source with a

field distribution ’ðxÞ is defined as

Wðx; pÞ¼ð2pÞ�1

Z
’ x þ x0

2

� �
’� x � x0

2

� �
expðik px0Þdx0:

(5)

where k is the wavenumber. The definition in (5) is

chosen such that the p variable has the same dimension-

ality as in the ray matrix formalism in (3).

3. Light propagation through a slab in the

paraxial approximation

Let us consider first an optical system composed of a

slab with thickness d made from a material with

refractive index n (n < 0 for metamaterials and n > 0

for common materials) in air (surrounded by media with

n = 1). We assume that a light source is placed at z = 0,

at a distance d1 in front of the slab (see Fig. 1(a)) and

trace its phase space evolution at several planes along

the z axis. In particular, if the light source is a Gaussian

beam [14] with waist w0 at z = 0, the normalized scalar

field distribution at the waist is

’ðxÞ ¼ exp
�x2

2w2
0

� �
; (6)

and the corresponding WDF is given by

Wðx; pÞ ¼
ffiffiffiffiffiffi
2p
p

w0 exp
�x2

w2
0

� p2k2w2
0

� �
: (7)

For a clearer representation of light propagation, we

represent throughout this paper the WDF through its

contour at 1=e from its maximum height. These

contours are displayed in Fig. 2(a) and (b) for the

light distribution at the z = 0 plane (solid black line), for

z ¼ d1 (in front of the slab, dashed black line), for

z ¼ d1 þ d (immediately after the slab, dashed gray

line) and at a distance d2 after the slab (solid gray line).

The representation in Fig. 2(a) has been performed in

normalized coordinates, X ¼ x=w0 and P ¼ k pw0, for
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