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Abstract

The plasmon response of metallic nanostructures is anticipated to exhibit nonlocal dynamics of the electron gas when exploring

the true nanoscale. We extend the local-response approximation (based on Ohm’s law) to account for a general short-range nonlocal

response of the homogeneous electron gas. Without specifying further details of the underlying physical mechanism we show how

this leads to a Laplacian correction term in the electromagnetic wave equation. Within the hydrodynamic model we demonstrate this

explicitly and we identify the characteristic nonlocal range to be jNL� vF=v where vF is the Fermi velocity and v is the optical

angular frequency. For noble metals this gives significant corrections when characteristic device dimensions approach �1–10 nm,

whereas at more macroscopic length scales plasmonic phenomena are well accounted for by the local Drude response.
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1. Introduction

The interaction of light with the free electrons in

noble metals has led to a range of novel plasmonic

phenomena and a versatile platform for a variety of new

applications [1–5]. In particular, nanofabrication tech-

nologies and chemical synthesis are now allowing the

plasmonics community to explore and manipulate light-

matter interactions at sub-wavelength length scales,

taking advantage of the spatially rapid oscillations of

surface-plasmon polaritons and their ability to localize

their energy in very small metallic volumes and

structures [6].

The understanding of the optical response of

plasmonic structures has been successfully developed

within the common framework of the local-response

approximation (LRA) with Ohm’s law J(r) = s(r)E(r)

as the constitutive equation [7,8]. However, the ability

to fabricate and experimentally explore yet smaller

metallic nanostructures has recently stimulated new

theoretical developments aiming at quantum phenom-

ena in nanoplasmonic systems [9–11] and the most

recent experimental developments [12–16] have clearly

made a call for theory developments going beyond the

LRA. Spatial dispersion due to nonlocal response is one

of the extensions of the LRA formalism which have

been studied extensively in more recent years [17–27].

While the commonly employed LRA is inherently a

description without any intrinsic length scales [7,8], the

new developments naturally introduce fundamental

length scales associated with the quantum wave
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dynamics of the electron gas. As a consequence,

plasmon polaritons cannot sustain spatial oscillations

beyond a cut-off wave number v=vF [28,29], where vF

is the Fermi velocity of the electron gas. However, even

before reaching this cutoff we anticipate important

nonlocal corrections in noble-metal nanostructures with

characteristic dimension approaching the 1–10 nan-

ometer regime (see Fig. 1).

For light interaction with arbitrarily shaped plasmonic

structures, we begin from general considerations of

nonlocal response and treat the case of short-range

corrections to the LRA. The main result of this

phenomenological analysis is that, irrespectively of the

detailed underlying physical mechanism, nonlocal cor-

rections appear in Maxwell’s wave equation for the

electrical field through an additional Laplacian operator

term. Next, we turn to a specific hydrodynamic model and

derive this result explicitly. Finally, we briefly address the

importance of nonlocal response by dimensional analysis.

2. Nonlocal response formalism

We consider the interaction of light with metallic

nanostructures in the linear regime, but with a general

and spatially nonlocal response, i.e.

= � = � EðrÞ ¼ v

c

� �2
Z

dr0eðr; r0ÞEðr0Þ: (1)

In the following we will focus on the electron plasma

itself, for simplicity leaving out any interband effects.

For comparison to the commonly employed framework,

we note that within the LRA the two-point dielectric

function simplifies to e(r, r0) � eDd(r � r0) with the

usual Drude dielectric function

eD ¼ 1 þ is

e0v
¼ 1 �

v2
p

vðv þ i=tÞ (2)

where vp is the plasma frequency, s is the Ohmic

conductivity, and 1/t is the damping rate. In this case,

the integral in the integro-differential equation (Eq. (1))

is readily performed and we arrive at the ordinary

partial-differential equation (PDE) for the local-re-

sponse dynamics of plasmonic systems.

In the following we will use different approaches to

get more insight into the nonlocal response function e(r,

r0) associated with the plasmon response of the electron

gas in metals.

3. Phenomenological considerations

First, we note that the local approximation with a

delta-function response is an overall very good

approximation and modeling based on this is indeed

offering very good accounts of the majority of

plasmonic phenomena observed in experiments. Thus,

in our attempt to account for nonlocal response it seems

adequate to only slightly relax the delta-function

response. Consequently, we turn to a general nonlocal

response function e(r, r0) which is only short-range and

with a characteristic nonlocal length jNL, such as in a

Gaussian representation of a delta-function response

(see Fig. 2). For convenience, we write the response

function as

eðr; r0Þ ¼ eDdðr � r0Þ þ f ðjr � r0jÞ; (3)

i.e. with a local-response Drude contribution and with a

small nonlocal correction associated with a homoge-

neous and isotropic plasma. In accordance with the

above discussion we assume that f satisfiesZ
dr f ðrÞ � jeDj; (4a)

Z
dr rf ðrÞ ¼ 0; (4b)

Z
dr r2 f ðrÞ ¼ j2

NL: (4c)

The approach in Eq. (3) is strongly inspired by a recent

phenomenological approach by Ginzburg and

Zayats [30]. Rather than using a particular f as a

smearing function in numerical simulations we here

proceed analytically. Due to the short-range behavior of

f we may conveniently Taylor expand the slowly vary-

ing electrical field in the integrand of Eq. (1) around the

point r. To second order in (r0 � r) this gives

E jðr0Þ ’ E jðrÞ þ =E jðrÞ
� �

� ½r0 � r�

þ ½r0 � r�T ĤE jðrÞ
� �

½r0 � r�; (5)

where the Hessian matrix Ĥ has elements Ĥji ¼
@2=ð@ j@iÞ and j = x, y, z. Next, substituting into

Eq. (1) and performing the integral it is clear that by

assumption the zero-order term in the expansion con-

tributes negligibly compared to the Drude contribution

(Eq. (4a)). For symmetry reasons, the first-order terms

and the second-order cross terms vanish identically as

they involve the first moment of f (Eq. (4b)). Conse-

quently, the leading correction comes from the diagonal

terms of the Hessian which we conveniently write as

ð1=2Þ½r2E jðrÞ�½r0 � r�2, i.e. involving the second mo-

ment of f (Eq. (4c)). With these steps we now get

= � = � EðrÞ ¼ v

c

� �2

eD þ CNLr2
� �

EðrÞ; (6)
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