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Abstract

We present numerical calculations of the local density of optical states (LDOS) in the near field of disordered plasmonic films.

The calculations are based on an integral volume method, that takes into account polarization and retardation effects, and allows us

to discriminate radiative and non-radiative contributions to the LDOS. At short distance, the LDOS fluctuations are dominated by

non-radiative channels, showing that changes in the spontaneous dynamics of dipole emitters are driven by non-radiative coupling

to plasmon modes. Maps of radiative and non-radiative LDOS exhibit strong fluctuations, but with substantially different spatial

distributions.
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1. Introduction

Disordered plasmonic films obtained by evaporating

noble metals on a substrate are known to exhibit unusual

optical properties [1]. Close to the percolation thresh-

old, metallic clusters with fractal perimeters leads to

the emergence of subwavelength areas supporting

enhanced electric field, commonly called hot

spots [2]. These randomly distributed localized fields

turned out to be very promising for sensing [3,4],

subwavelength focusing [5], or non-linear optics [6].

Although several theoretical and numerical works have

been reported on the subject, the question of the local

density of optical states (LDOS) has been hardly

addressed.

It has been known for long that the decay rate of a

fluorescent emitter depends on its electromagnetic

environment [7,8], the dependence being described by

the LDOS r(r, v), with r the location of the emitter and

v the emission frequency. Indeed, the lifetime t of the

excited state of a dipole emitter with transition dipole p

is given in perturbation theory by 1/t = pv|p|2r(r, v)/

(3e0 9) where e0 is the vacuum permittivity and 9 the

reduced Planck constant. Thus the LDOS can be

directly probed experimentally by measuring t. In a

disordered medium, changes in the LDOS probe the

local environment [9–11], the photon transport

regime [12,13] or drive long-range correlations of

speckle patterns [14,15]. Recently, LDOS statistics in

the vicinity of disordered films have been studied

experimentally [16]. Enhanced LDOS fluctuations have

been observed close to the percolation threshold, in a

regime where the film morphology is controlled by

fractal clusters. These enhanced fluctuations have been

qualitatively associated to localized plasmon modes.
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Theoretical and numerical studies of semi-continuous

disordered metallic films are very often based on

approximations, such as mean-field theories [17] or

quasi-static calculations [6,18]. An exact numerical

approach has been reported recently using a FDTD

(finite-difference time-domain) scheme [19].

In this paper, we present numerical calculations of

the LDOS in the vicinity of disordered metallic films

based on an integral volume method. This exact

formulation is limited only by the discretization of

the films into finite size cells. The numerical algorithm

is divided into two steps. Firstly, we use a Monte–Carlo

algorithm to simulate the growth of a gold film under an

evaporation/deposition process, and check that the

geometrical properties of the film near the percolation

threshold are in good agreement with experimental

observations. Secondly, we solve Maxwell’s equations

in 3D, taking into account polarization and retardation

effects, which allows us to compute maps and statistical

distributions of the LDOS. The computations are in

agreement with known experimental results. The

approach allows us to split the LDOS into its radiative

and non-radiative contributions, and to discuss their

relative contributions to the spatial fluctuations of the

LDOS, which is the main focus of this work.

2. Numerical approach

2.1. Generation of disordered films

Our first goal is to generate numerically disordered

metallic films that have the same properties as the

experimental evaporated metallic films. To do so, we

use a kinetic Monte–Carlo algorithm, as proposed

in [20]. The idea is to randomly deposit 5 nm large gold

particles on a square grid via an iterative algorithm, and

let the particles diffuse under the influence of an

interaction potential until a stable geometry is reached.

At every iteration of the algorithm, we randomly choose

either to deposit a new particle (probability p0) or to

make a particle on the grid jump to a more stable

neighbour site (probability pi!j to scatter from site i to

site j). Using the normalization p0 +
P

i,j6¼ipi!j = 1, we

only need to pick a random number out of [0, 1] to

determine the relative weight of each process. More

precisely, the probability to deposit a particle reads

p0 = NF, where N is the number of particles that remains

to be deposited in order to reach the prescribed filling

fraction, and F is a constant (with dimension s�1)

modeling the experimental deposition rate. The prob-

ability for a particle located on site i to jump to the

neighbor site j reads pi!j = exp [� DEi!j/(kBT)], where

kB is the Boltzmann constant, T the temperature of the

surface and DEi!j the activation energy barrier.

Computing DEi!j is a complex issue for

atoms [21,22], and is not possible from first principles

for nanometer size particles. In the present approach, we

have chosen to deal with a rescaled atomic potential that

renormalizes the energy barrier in order to apply to a

nanoparticle. We assume that DEi!j = a(Ei � Ej),

where a is a positive dimensionless adjustable para-

meter taking into account the influence of the substrate

and the scaling. Ei is the rescaled ‘‘atomic’’ potential of

a particle located on site i, which is allowed to jump to

the neighbor site j if Ei > Ej. This potential is given by

the following expression based on a tight-binding

second moment method [23]:

Ei ¼ A
X
i 6¼ j

exp½� pðrij=r0 � 1Þ�

�B
X
i 6¼ j

exp½�2qðrij=r0 � 1Þ�
( )1=2

:

(1)

In this expression, r0 is the size of one particle, rij the

distance between two sites i and j and A, B, p and q are

constants that were tabulated for atoms [23]. The itera-

tive deposition process is stopped when all particles

have been deposited (so that the prescribed filling

fraction has been reached) and no particle can move

to a more stable site.
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Fig. 1. Numerically generated gold films for three different filling fractions f (gold is represented in dark). The parameters for the computation are:

T = 300 K, a = 2.58 . 10�2, F = 1014 s�1, A = 0.2061 eV, B = 1.79 eV, p = 10.229, q = 4.036.
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