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Abstract

We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell’s equations in the time domain on

unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic

vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the

optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code

are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict

ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper.

Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to

demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of

nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which

operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and

with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.
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1. Introduction

Numerical algorithms in computational electromag-

netics are generally subdivided in two main categories:

time [1,2] and frequency domain methods [3]. The

dielectric and magnetic material properties that appear

in the constitutive relations, associated with Maxwell’s

equations, are generally frequency dependent. In the

frequency domain, these relations take on simple

algebraic shapes for any material property. In contrary,

their formulation for dispersive materials in the time

domain contains a convolution operation, which necessi-

tates more elaborate solution methods. This fact, together

with the simplicity of the involved differential equations,

has favored the study of frequency domain methods for a

considerable period [4]. As a Consequence, researchers

have developed a myriad of methods in the frequency

domain for solving general electromagnetic problems.

Some of the more prominent ones are method of moments

(MoM) [5], finite element method (FEM) [6,7], general-

ized multipole technique (GMT) [8], finite difference
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frequency domain (FDFD) [4], and the boundary element

method (BEM) [9]. In the frequency domain, the problem

is solved for one discrete frequency, which is itself a

parameter in the analyzed system of equations. To obtain

the system response for a range of frequencies, the

solution process needs to be repeated for every frequency

point. If reduced accuracy is acceptable, then fast-

frequency sweep methods can be employed which in turn

extrapolate the frequency response over a wide bandwidth

[7]. By the emergence of new research areas, such as

biomedical applications for health monitoring [10] and,

specifically, optical engineering using nanometer sized

structures [11] full-wave analysis of complex and large-

scale problems became strongly required. The encoun-

tered problems have definitely challenged the established

frequency domain methods. The large dimensions of the

geometries not only render the repeated solution of the

problem immensely time consuming but also prevent the

frequency extrapolation methods to produce appropriate

results. Moreover, there is often a need to know the

response of the system over a wide frequency bandwidth

through a single computation. To remedy these difficulties

and for development of flexible and fast routines, time

domain methods have been studied.

In time domain, once the problem has been analyzed

for an excitation with broad frequency content, the

spectral response of the system is retrieved via the

Fourier transform of the time domain results. Therefore,

time domain techniques are usually methods of choice

for problems with broadband variations and large

dimensions. Moreover, studying nonlinear phenomena,

such as Raman response and Kerr media [1], is feasible

in the time domain. In contrast to the wide variety of

frequency domain methods, there is only a rather

limited number of general purpose methods in the time

domain [2]: complexity of the differential equations and

the constitutive relations being preeminent reasons. For

several decades, based on the pioneering work by

Taflove, the finite difference time domain (FDTD)

method has dominated time domain electromagnetics

[1]. Although the method is robust, simple and fast, it

has suffered from the severe limitation that it discretizes

the considered geometries based on a uniform cartesian

grid. Remedies, such as subgridding or split-material

voxels [1], have been studied over the years without

fully resolving the issue. Thus, FDTD has somewhat

lost its competitive advantage for modeling photonic

nano-structures, where multi-scale geometries are

involved and surface effects, such as plasmonic

resonances, are frequently encountered.

One can tackle the addressed problem with cartesian

grids by taking advantage from unstructured, tetrahedral

grids. Thus, the finite element time domain method

(FETD) has been developed. In FETD, the electro-

magnetic fields are expanded, on an unstructured

tetrahedral grid as a superposition of spatial basis

functions scaled with a time dependent coefficient. Then,

various finite difference schemes are used for temporal

discretization leading to either implicit or explicit time

marching processes [7]. We comment that explicit and

implicit here refer to the temporal discretization of the

differential operators. Both variants require the solution

of a large linear system of equations at every time step for

time update [7,12–15], leading to extremely high

computation costs. Even parallelization on distributed

memory cluster computers only partially resolves this

issue. Hence, despite the capability of using unstructured

grids, this method is only applicable for relatively small

nano-optical problems [13–15].

In recent years, the discontinuous Galerkin (DG)

time domain methods, an inherently different group of

methods, have received substantial attention. DG

algorithms provide explicit schemes on unstructured,

tetrahedral grid but can be used on hexahedral grids as

well. They are high order methods and are conceptually

based on expanding the electromagnetic fields into a

separate set of basis functions for each element. Then,

the electromagnetic continuity conditions are enforced

between the elements by coupling the fields over the

common faces with the adjacent elements. The specific

nature of this coupling condition, denoted as numerical

flux, significantly influences the results [16]. Among

these methods the interior penalty (IP) methods and

variants based on central and upwinding flux were

extensively investigated for two- and three dimensional

problems in electromagnetics for the whole frequency

range [17–21]. An alternative in this category is the

finite volume time domain (FVTD) method. FVTD is a

1st order accurate method where each element is

coupled to the adjacent ones based on conservation laws

[2, chap. 9], [22–24]. The fully explicit nature of these

methods considerably simplifies the computation of

large problems, because just simple multiply-and-add

style operations for marching in time are required.

Additionally, the computational requirements, e.g.

memory and calculation time, scale linearly with the

number of tetrahedral elements.

Among the computational methods roughly classi-

fied as DG methods, a specific method was recently

developed for unstructured tetrahedral grids by Lou and

Jin [25], denoted as the element level time domain

(ELTD) method. The original idea of this method is

presented in a previous paper [26], where the concept of

domain decomposition is employed for coarse-grained
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