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Abstract

We study a 3-dimensional, dual-field, fully explicit method for the solution of Maxwell’s equations in the time domain on
unstructured, tetrahedral grids. The algorithm uses the element level time domain (ELTD) discretization of the electric and magnetic
vector wave equations. In particular, the suitability of the method for the numerical analysis of nanometer structured systems in the
optical region of the electromagnetic spectrum is investigated. The details of the theory and its implementation as a computer code
are introduced and its convergence behavior as well as conditions for stable time domain integration is examined. Here, we restrict
ourselves to non-dispersive dielectric material properties since dielectric dispersion will be treated in a subsequent paper.
Analytically solvable problems are analyzed in order to benchmark the method. Eventually, a dielectric microlens is considered to
demonstrate the potential of the method. A flexible method of 2nd order accuracy is obtained that is applicable to a wide range of
nano-optical configurations and can be a serious competitor to more conventional finite difference time domain schemes which
operate only on hexahedral grids. The ELTD scheme can resolve geometries with a wide span of characteristic length scales and
with the appropriate level of detail, using small tetrahedra where delicate, physically relevant details must be modeled.
© 2012 Elsevier B.V. All rights reserved.
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1. Introduction

Numerical algorithms in computational electromag-
netics are generally subdivided in two main categories:
time [1,2] and frequency domain methods [3]. The
dielectric and magnetic material properties that appear
in the constitutive relations, associated with Maxwell’s
equations, are generally frequency dependent. In the
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frequency domain, these relations take on simple
algebraic shapes for any material property. In contrary,
their formulation for dispersive materials in the time
domain contains a convolution operation, which necessi-
tates more elaborate solution methods. This fact, together
with the simplicity of the involved differential equations,
has favored the study of frequency domain methods for a
considerable period [4]. As a Consequence, researchers
have developed a myriad of methods in the frequency
domain for solving general electromagnetic problems.
Some of the more prominent ones are method of moments
(MoM) [5], finite element method (FEM) [6,7], general-
ized multipole technique (GMT) [8], finite difference


http://www.sciencedirect.com/science/journal/15694410
http://dx.doi.org/10.1016/j.photonics.2012.01.002
mailto:arya.fallahi@psi.ch
mailto:benedikt.oswald@psi.ch
mailto:leidenberger@ifh.ee.ethz.ch
http://dx.doi.org/10.1016/j.photonics.2012.01.002

208 A. Fallahi et al./Photonics and Nanostructures — Fundamentals and Applications 10 (2012) 207-222

frequency domain (FDFD) [4], and the boundary element
method (BEM) [9]. In the frequency domain, the problem
is solved for one discrete frequency, which is itself a
parameter in the analyzed system of equations. To obtain
the system response for a range of frequencies, the
solution process needs to be repeated for every frequency
point. If reduced accuracy is acceptable, then fast-
frequency sweep methods can be employed which in turn
extrapolate the frequency response over a wide bandwidth
[7]. By the emergence of new research areas, such as
biomedical applications for health monitoring [10] and,
specifically, optical engineering using nanometer sized
structures [11] full-wave analysis of complex and large-
scale problems became strongly required. The encoun-
tered problems have definitely challenged the established
frequency domain methods. The large dimensions of the
geometries not only render the repeated solution of the
problem immensely time consuming but also prevent the
frequency extrapolation methods to produce appropriate
results. Moreover, there is often a need to know the
response of the system over a wide frequency bandwidth
through a single computation. To remedy these difficulties
and for development of flexible and fast routines, time
domain methods have been studied.

In time domain, once the problem has been analyzed
for an excitation with broad frequency content, the
spectral response of the system is retrieved via the
Fourier transform of the time domain results. Therefore,
time domain techniques are usually methods of choice
for problems with broadband variations and large
dimensions. Moreover, studying nonlinear phenomena,
such as Raman response and Kerr media [1], is feasible
in the time domain. In contrast to the wide variety of
frequency domain methods, there is only a rather
limited number of general purpose methods in the time
domain [2]: complexity of the differential equations and
the constitutive relations being preeminent reasons. For
several decades, based on the pioneering work by
Taflove, the finite difference time domain (FDTD)
method has dominated time domain electromagnetics
[1]. Although the method is robust, simple and fast, it
has suffered from the severe limitation that it discretizes
the considered geometries based on a uniform cartesian
grid. Remedies, such as subgridding or split-material
voxels [1], have been studied over the years without
fully resolving the issue. Thus, FDTD has somewhat
lost its competitive advantage for modeling photonic
nano-structures, where multi-scale geometries are
involved and surface effects, such as plasmonic
resonances, are frequently encountered.

One can tackle the addressed problem with cartesian
grids by taking advantage from unstructured, tetrahedral

grids. Thus, the finite element time domain method
(FETD) has been developed. In FETD, the electro-
magnetic fields are expanded, on an unstructured
tetrahedral grid as a superposition of spatial basis
functions scaled with a time dependent coefficient. Then,
various finite difference schemes are used for temporal
discretization leading to either implicit or explicit time
marching processes [7]. We comment that explicit and
implicit here refer to the temporal discretization of the
differential operators. Both variants require the solution
of alarge linear system of equations at every time step for
time update [7,12-15], leading to extremely high
computation costs. Even parallelization on distributed
memory cluster computers only partially resolves this
issue. Hence, despite the capability of using unstructured
grids, this method is only applicable for relatively small
nano-optical problems [13-15].

In recent years, the discontinuous Galerkin (DG)
time domain methods, an inherently different group of
methods, have received substantial attention. DG
algorithms provide explicit schemes on unstructured,
tetrahedral grid but can be used on hexahedral grids as
well. They are high order methods and are conceptually
based on expanding the electromagnetic fields into a
separate set of basis functions for each element. Then,
the electromagnetic continuity conditions are enforced
between the elements by coupling the fields over the
common faces with the adjacent elements. The specific
nature of this coupling condition, denoted as numerical
flux, significantly influences the results [16]. Among
these methods the interior penalty (IP) methods and
variants based on central and upwinding flux were
extensively investigated for two- and three dimensional
problems in electromagnetics for the whole frequency
range [17-21]. An alternative in this category is the
finite volume time domain (FVTD) method. FVTD is a
Ist order accurate method where each element is
coupled to the adjacent ones based on conservation laws
[2, chap. 9], [22-24]. The fully explicit nature of these
methods considerably simplifies the computation of
large problems, because just simple multiply-and-add
style operations for marching in time are required.
Additionally, the computational requirements, e.g.
memory and calculation time, scale linearly with the
number of tetrahedral elements.

Among the computational methods roughly classi-
fied as DG methods, a specific method was recently
developed for unstructured tetrahedral grids by Lou and
Jin [25], denoted as the element level time domain
(ELTD) method. The original idea of this method is
presented in a previous paper [26], where the concept of
domain decomposition is employed for coarse-grained
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