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H I G H L I G H T S

� Coherent phonon dynamics of normal metal in ultrafast spectroscopy is studied.
� Non-equilibrium phonon self-energy is found in terms of gauge invariant polarization functions.
� Polarization function is obtained by solving gauge invariant quantum Boltzmann equation.
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a b s t r a c t

The phonon dynamics of normal metal in the coherent regime of ultrafast spectroscopy is studied based
on the non-equilibrium gauge invariant Green's function method. The non-equilibrium phonon self-
energy is computed explicitly as a function of time in a gauge invariant way up to the second order of
electric field of applied laser pulse. The extension beyond the coherent regime and the incorporation of
correlation effects are discussed.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Ultrafast spectroscopy is becoming increasingly important ex-
perimental method for the study of quantum materials [1,2]. In
ultrafast spectroscopy, the material of interest is photoexcited (or
pumped) by intense laser pulse of a very short duration (for in-
stance, about 60 femtoseconds (fs) for Nd:glass laser), and then a
suitably delayed probe laser pulse monitors the subsequent dy-
namics of materials in real time domain. The above real time dy-
namics can manifest itself, for example, in the time-dependent
variation of reflectivity [2]. For a general introduction to the
method of ultrafast spectroscopy, see Ref. [3]

The ultrafast spectroscopy has been widely employed in the
study of semiconductors and nanostructures [4] as well as in di-
verse areas such as chemistry and biology [3].

The applications of ultrafast spectroscopy to the study of cor-
related materials and quasi-particle dynamics are relatively recent
[1,2,5–7]. One of the key features of these studies is the selective
excitations of various modes of competing orders and the

observation of subsequent relaxation process in real time domain.
By the very nature of ultrafast spectroscopy, it is primarily fo-

cused on the study of excitations in non-equilibrium states. In
general, the relaxation dynamics of photoexcited states are clas-
sified into a few (mutually overlapping) stages [2,4]. Depending on
specific systems under consideration, more detailed classification
scheme might be appropriate, but here we adopt the simplest
descriptions enough for delivering our main points.

The first stage is often referred to as the coherent regime where
the phase coherence between the non-equilibrium excitations of
materials and the electromagnetic field of laser pulse are main-
tained. The time span of this stage is roughly sub 100 fs. The
second stage is the non-thermal regime where the charge carrier
distribution is given by non-thermal distribution (namely, not
Fermi-Dirac distribution characterized by equilibrium tempera-
ture) after the phase coherence of the first stage is lost by rela-
tively fast scattering processes such as electron–electron scatter-
ing. The typical time span of the second stage is about 2 ps. The
last stage is the isothermal regime during which the thermal
equilibrium is restored by various scattering mechanisms (most
important one is the electron–phonon scattering). A typical time
scale for this stage is over 50–100 ps.
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A widely used theoretical framework for the interpretation of
experimental results of the ultrafast spectroscopy of semi-
conductors is the semiconductor Bloch equations [4], which is
essentially two-level system Hamiltonian equation of motion in-
cluding many-body Coulomb interactions. The ultrafast quasi-
particle relaxation dynamics of metallic systems has been theo-
retically studied based on (semiclassical) Boltzmann equation
[7,8], and experiments are well described by the approach [7].
However, in view of phenomena occurring in such a short time
scale of the order of femtoseconds, it is evidently desirable to
develop a theoretical framework for the relaxation dynamics of
quasi-particles based on full quantum mechanical approach. This is
especially true of the coherent regime where the quantum me-
chanical phase coherence plays a key role.

The quantum Boltzmann equation [9] can be derived from the
Keldysh–Schwinger (KS) formalism [10,11]. Kadanoff and Baym
has introduced the gradient expansion with respect to the center of
mass coordinates [12] in their derivation of quantum Boltzmann
equation [the center of mass coordinates of a generic Green's
function ( ′)G x x, is ( + ′)x x /2, where = ( →)x t r, ]. However, this
gradient expansion possesses a few serious problems (see Section
8.5 of Ref. [9]). It turns out that the expansion is only valid to the
first order of applied electromagnetic field, since the higher order
terms are not gauge invariant, so that their physical meanings
become ambiguous. Also, rather obviously, the gradient expansion
is not suitable for the transient time-dependent phenomena such
as those occurring in ultrafast spectroscopy. Recall that a general
Green's function ( ′)G x x, with translational symmetry does not
depend on the center of mass coordinates ( + ′)x x /2 (it depends
only on the relative coordinate − ′x x ).

The problem of gauge invariance has been addressed in [13–
15]. In the context of quantum Boltzmann equation the problem of
gauge invariance can be phrased as follows. The particle dis-
tribution function of quantum Boltzmann equation is a Fourier
transform of a certain one-body Green's function (more details
will follow in later sections)

ψ ψ( ′) = − 〈 ( ) ( ′)〉 ( )†G x x i x x, , 1

where ψ ( )x is a particle destruction operator and ψ ( ′)† x is a particle
creation operator (Hermitian conjugate of ψ ( )x ). Under the elec-

tromagnetic U(1) gauge transformation
Λ ( )
ℏe

ie x
c ( <e 0 is the electron

charge), the field operators and the electromagnetic vector po-
tential ( )μA x transform like
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where CGS Gaussian unit is used and the space–time metric is
chosen to be ( − − − )diag 1, 1, 1, 1 . Under Eq. (2), Green's function
(Eq. (1)) transforms like

( ′) → ( ′) ( )
Λ Λ( )
ℏ − ( ′)

ℏG x x e G x x, , , 3
ie x

c
ie x

c

which is not gauge invariant in a manifest way. The violation of
gauge invariance can be fixed by introducing the following gauge
invariant Green's function [14,15]:

∫( ′) ≡ +
ℏ

( ) ( ′)
( )

μ
μ

′

⎡
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⎤
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dz A z G x x, exp , ,
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x

inv

where the integration path for the phase factor is taken to be a
straight line from ′x to x.

The main objective of this paper is to describe the coherent
regime of normal metal in ultrafast spectroscopy in the theoretical
framework of gauge invariant quantum Boltzmann equation. The
description of coherent regime necessitates going beyond the

gradient expansion. Since the electric and magnetic field is given
by the derivatives of potential ( )μA x , the problem of gauge in-
variance and that of the gradient expansion are mixed together.
This difficulty can be avoided by the use of gauge invariant Green's
function.

More specifically, we studies the electron–phonon system
(phonon is longitudinal) of normal metal, and the main focus is on
the phonon dynamics induced by electrons being driven by laser
pulse. This dynamics is best captured by the phonon self-energy
Π ( ′)x x,ph (see Eq. (59)) which should be gauge invariant object since
the phonons are charge neutral quanta. It will turn out that the
phonon self-energy in random phase approximation (RPA) is de-
termined by the polarization function of electrons Π ( ′)x x,0 (see Eq.
(50)) which is explicitly gauge invariant:

Π ( ′) ∼ ( ′) ( ′ ) = ( ′) ( ′ ) ( )x x G x x G x x G x x G x x, , , , , . 5ph inv inv

Thus the phonon dynamics can be understood in gauge invariant
way by solving for the gauge invariant Green's function ( ′)G x x,inv .
The higher order terms in electromagnetic fields of laser pulse can
be also incorporated (the second order contribution in the electric
field of laser pulse to ( ′)G x x,inv have been obtained as a function of
time).

Our study has been motivated in part by Ref. [16], where the
time-dependent screening effect of semiconductors (instead of
metal) was studied within RPA in the context of ultrafast spec-
troscopy based on the generalized Kadanoff–Baym ansatz [17]. In
Ref. [16], the gauge invariance poses no problem since the elec-
tromagnetic field couples to semiconductors with dipole interac-

tion −
→

·
→

( )d E t (see Eq. (3.4) of Ref. [16]), where
→
d is the interband

dipole matrix element. If the intraband processes are also included,
then the direct coupling to the potential ( )μA x is inevitable, and
the problem of gauge invariance will arise just like the case of
metallic system. The gauge invariance of the generalized Kadan-
off–Baym ansatz approach [17] is not clear. The key point is the use
of single time density matrix approximation (see Eq. (2.13) Ref. [16]),
and the compatibility between the approximation and the gauge
invariance is not evident. This is the reason why we have adopted
the gauge invariant Green's function method; in our approach the
gauge invariance is manifest in all steps, so that even if we make
certain approximations, the gauge invariance is guaranteed to be
kept intact.

Main results of this paper are Eqs. (59), (86), (87), (90)–(92).
This paper is organized as follows: in Section 2 the well-known
phonon dynamics of normal metal at equilibrium at zero tem-
perature is reviewed in such a way that can be directly generalized
to non-equilibrium case. In Section 3 the phonon self-energy in
non-equilibrium is derived using KS formalism. In Section 4 the
Dyson equations for gauge invariant Green's function are derived,
and they are solved for the coherent regime of ultrafast spectro-
scopy in Section 5. We close this paper with discussions and
summary in Section 6.

2. Phonon dynamics of normal metal in equilibrium

We first review the phonon dynamics of normal metal in
equilibrium, which is well understood [9,18]. In this paper, how-
ever, we will present them in a way which can be most directly
generalized to the non-equilibrium case. For this purpose, the
functional integral method will be employed below [19]. The
space–time basis (instead of energy–momentum basis) will be
adopted mostly, since this is the form which can be readily gen-
eralized to the non-equilibrium cases where space–time transla-
tional symmetries are absent.

We assume a single electron band with isotropic quadratic
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