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a b s t r a c t

We investigate the influence of external electric fields on the spins of a ballistic nanowire in terms of
variations of the Rashba parameter and modification of the confinement potential. For a weak Rashba
effect, the spins along the confinement direction in a given subband nearly assume full quantization. In
the presence of a perpendicular magnetic field, the state of quantization can be manipulated using a
transverse electric. This process requires modifications in the spin textures. If an in-plane magnetic field
is applied, spins suffer rigid displacement to one edge of the wire and their expectation value becomes
independent of the transverse electric field.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Spintronic devices rely on the manipulation of spins in solid-
state systems [1–5]. The spin-precession of propagating electrons
at zero magnetic field induced by the Rashba spin–orbit interac-
tion (SOI) represents the basic mechanism of spin dependent field-
effect-transistors [6]. This mechanism is plausible since external
control on the strength of the Rashba effect is established ex-
perimentally [7–9]. The Rashba effect also involves an intersub-
band coupling that mixes nearest subbands with opposite spins
and produces anti-crossings at degenerate points of the energy
spectrum of electrons. The reduction of the intersubband coupling
is essential to improve the performance of the spin transistor,
since it limits the angular distribution of electrons. In principle,
this could be achieved by imposing strong transverse confining
potential, that is using a quasi-one dimensional system [10,11].
However, when Rashba terms are treated on equal footing, elec-
tron spin is not a good quantum number which results in spin
textures. Basically, the spin direction shows dependence on the
wave vector, k, characterizing the free motion of electrons along
the wire axis and the wire transversal coordinate x [12,13].

Also, spins of the nanowire can be manipulated using electric
and magnetic fields applied perpendicular or in the plane of the

electron gas layer. The magnetic field,
→
B , strongly alters the sub-

band structure and opens energy gaps, which influences the
physical properties of the nanowire including spin [12,14–20].
Electric voltage applied to top gates changes the strength of the
SOI as we mentioned above. An electric field applied along the
direction of quantum confinement induces a Stark shift in the
electron spectra and changes the effective g-factor [21,22]. The

effect of the electric field on the spin properties of nanowires is
not reported so far.

Here, we study numerically the spin expectation value and its
local density and analyze the results analytically using perturba-
tion calculations in the weak Rashba regime. We demonstrate that
the spin component along the quantum confinement is mainly
quantized in this regime, since local extrema in higher spin
branches transform into plateaus. In the presence of transverse
electric field, the response of the spin expectation value and its
accumulation at the wire edge depend on the direction of the
magnetic field. In the case of in-plane magnetic fields, we show
that spin density shifts linearly along the confinement direction
with an increasing electric field keeping its average constant. For
perpendicular magnetic fields, considerable changes in the spin
textures occur which displace their average value along the k-axis.
This property allows the spin quantization of a given state to be
controlled by external electric fields.

2. The model

The nanowire may be realized by confining a two-dimensional
electron gas in InAs using external gate voltages. We model such
confinement as a parabolic potential, ωm x /22 , characterized by a
frequency ω. The structural inversion asymmetry in InAs leads to
the Rashba spin–orbit coupling [15]. The wire axis is taken along
the y-direction, which supports free electron motion with a wave

function given by ikyexp . Application of an electric field,
→
F , in the

lateral direction alters the effective confinement potential. Fur-

thermore, a magnetic field,
→
B , applied in the z-direction, changes

the frequency of the harmonic motion due to orbital effects.
However, an in-plane magnetic field only affects the spin degrees
of freedom [12].

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/physe

Physica E

http://dx.doi.org/10.1016/j.physe.2016.03.025
1386-9477/& 2016 Elsevier B.V. All rights reserved.

E-mail address: msakr@alexu.edu.eg

Physica E 81 (2016) 253–258

www.sciencedirect.com/science/journal/13869477
www.elsevier.com/locate/physe
http://dx.doi.org/10.1016/j.physe.2016.03.025
http://dx.doi.org/10.1016/j.physe.2016.03.025
http://dx.doi.org/10.1016/j.physe.2016.03.025
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2016.03.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2016.03.025&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.physe.2016.03.025&domain=pdf
mailto:msakr@alexu.edu.eg
http://dx.doi.org/10.1016/j.physe.2016.03.025


The Hamiltonian for perpendicular magnetic fields is given by
[15,21]
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Here, → = ( )p p p,x y , m is the effective mass of the electron, σ→ is the
Pauli vector operator, μB is the Bohr magneton, and g is Lande's g-

factor. Using Landau gauge, the vector potential,
→
A , can be related

to the magnetic field
→

= ( )B B0, 0, through
→

= ^A xBey. The Rashba
effect is described by
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where α is the Rashba spin–orbit interaction constant. The
strengths of different mechanisms can be compared to each other
using the length scales
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where the cyclotron frequency ω = eB m/c . We also use the wave
vector ω= ℏk eF/EF to characterize the action of the external elec-
tric field on electrons. After replacing py by ℏk, the Hamiltonian in
units of ωℏ can be expressed as follows:
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We used the shifted ladder operators a and †a , with
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and the dimensionless Zeeman splitting

δ =
( )

⎛
⎝⎜

⎞
⎠⎟

g m
m

L
L2 12B0

0
2

is given in terms of the free electron mass m0. The first term in Eq.
(5) shows that the oscillator frequency assumes a new normalized
valueΩ, given by Eq. (7), due to the presence of the magnetic field.
Coupling of neighboring energy subbands due to Rashba SOI is

given by Eq. (6). This complex process can be treated by numerical
or perturbation techniques.

In the case of an in-plane magnetic field, making an angle θ
with the confinement direction, orbital magnetic effects are absent
[12] and the oscillator frequency does not change. The Hamilto-
nian is given by [12,23,24]
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The dimensionless form of Eq. (13) reads
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with γ = L L/2 SO0 .
Because of the free motion of electrons along the y-direction,

the eigenfunction may be written in the following form [15]:
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regardless of the direction of the magnetic field. For a given k, the
expectation value of the spin is given by

∫σ Ψ σ Ψ〈→( )〉 = →
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†k dx 16k k

In either case, the spinor of the wave function can be expanded in
terms of the basis, ψ η

( )
nk

0 , of the Hamiltonian obtained after ne-
glecting the Rashba intersubband coupling [22]. For perpendicular
magnetic field, we have
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Here, the index n corresponds to the harmonic oscillator wave
function φ ( )xn , and the spin branch is characterized by the index
η = ± 1. The parameter ηc is given by
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Such decomposition allows the spin to depend on k and the x-
coordinate, which gives rise to spin textures [12,17]. We determine
the expansion coefficients numerically. In our analysis, we confine
ourselves to the weak Rashba regime, where for perpendicular
magnetic field the term ′H (Eq. (6)) is taken as perturbation with

<L L/ 1SO0 . In this case, Ψ ( )xk can be calculated using the matrix
elements η η〈 ′ ′| ′| 〉n H n and the eigenvalues, η

( )Enk
0 , corresponding to

ψ η
( )
nk

0 . For instance, the first-order wave function correction for the
lowest spin branch reads
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