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o Study of coupled superconducting wires or bosonic tubes.
e Determination of the induced in one wire by the other.

e Connection of this problem to the commensurate-incommensurate transition.
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systems are discussed.

A two-leg ladder of either interacting bosons or tightly bound cooper pairs is investigated when a su-
percurrent is forced in one of the legs of the ladder. The two legs of the ladder are connected by a
tunneling term. Using a bosonization representation of such an interacting ladder we show that up to a
certain critical current the current in the first wire induces an identical supercurrent in the second wire.
When this threshold is exceeded vortices are formed in the system and the current in the second wire
reduces even if the driving current increases. Potential applications to condensed matter or cold atomic

© 2016 Published by Elsevier B.V.

1. Introduction

Transport in mesoscopic systems has been proven to be a cor-
nucopia of physical phenomena. A milestone in that field was the
Laudauer-Buttiker (LB) formulation [1,2] that allowed to show that
the transport was in fact connected, for non-interacting systems to
the actual transmission and reflection of waves across the system
and paved the way to understanding phenomena such as the
quantization of conductance. This formalism has proven to be a key
tool in our understanding of transport in mesoscopic structures [3].

The situation becomes unfortunately more intricate when in-
teractions are present. In that case one cannot consider the
transmission of each wave independently and thus the LB form-
alism is not directly applicable and with it gone so goes most of
our understanding of transport in such mesoscopic structures.
Several extensions of the formalism for interacting systems have
been studied [4] but the general problem is hard to solve. One
situation in which we can make progress is provided by
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one-dimensional systems [5]. In such systems the interactions can
be taken care of by a variety of methods. In particular one method,
known as bosonization, allows us to reduce the problem to an
essentially non-interacting problem of collective excitations, al-
lowing us to use methods similar to the LB formalism to study e.g.
the conductance of the problem [6-8]. Of course, even in one di-
mension, interactions can also lead to problems which still are not
reduced easily to noninteracting particles. This is in particular the
case when scattering is present inside the one-dimensional
structure [5].

Another remarkable case for which interactions play a central
role even if the system is totally pure is when more than one one-
dimensional structure is present. Probably the most well-known
studied case corresponding to such a situation is the case of
Coulomb drag where two structures (one- or two-dimensional)
are close together. A current is forced in the first one and due to
the Coulomb coupling to the second one can potentially induce
either a current or a voltage in the second one. This problem has
been extensively studied both theoretically and experimentally
(see e.g. [9-11] and ref. therein).

In this paper we study a system close to idea of the Coulomb
drag problem but for superconducting chains. We study a system
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of two superconducting (fermions with attractive interactions) or
superfluid (bosonic) chains which are not coupled via interactions
as in Coulomb drag but by a tunneling term of either cooper pairs
(fermions) or single particles (bosons). In such a system one can
force a supercurrent in the first wire and ask a similar question
than for the Coulomb drag: What is the current induced in the
second wire? Besides the interest from a theoretical point of view,
the motivation for such a study is twofold. First: in cold atomic
systems such ladders of bosonic tubes have been realized [12] and
have proven excellent systems to tackle related phenomena such
as the chiral edge states induced by an externally applied gauge
field, equivalent to a magnetic field for charged particles. Second:
in condensed matter, in addition to the more conventional su-
perconducting wires available [13] it has been recently possible to
write one-dimensional structures [14] on two-dimensional su-
perconductors obtained at oxide interfaces [15] allowing us to
potentially study the tunnelling between one-dimensional super-
conducting wires in the future.

The plan of the paper is as follows. In Section 2 we define the
problem. Section 3 is a brief reminder of the bosonization technique
that will be used in the solution. Section 4 discusses the solution
and the main physical features. Section 5 is the conclusion.

2. Definition of the problem

We consider a two-leg ladder system as depicted in Fig. 1.

Each tube corresponds to either interacting one-dimensional
bosons or fermions in the superconducting state. The Hamiltonian
of the decoupled legs is thus

HO = HY + HY M

where HY is the Hamiltonian of the interacting particles on leg i. For
simplicity we ignore here the presence of an underlying lattice
along the legs. This is realistic for realizations with cold atoms that
can have bosonic tubes in a continuum. For the fermionic case of
superconducting wires the (in)commensurability between the car-
rier density and the underlying microscopic lattice is so large that
one can safely ignore the lattice. We will not specify the microscopic
Hamiltonian Hy for the moment since in both cases the low energy
theory can be reduced to the same effective Hamiltonian (the so-
called Tomonaga-Luttinger liquid (TLL) hamiltonian) that we will
introduce in Section 3. The two legs are supposed to be coupled by a
tunneling term. For bosons such coupling is of the form

Hy= —t, fdx(w;(x)y/z ®+h.c) 2

For the case of superconducting wires the situations are micro-
scopically more complex since the tunneling term involves in
principle single particles. It is thus of the form (2) (with an addi-
tional spin index for each spin species). However in the case where
the wires are superconducting and the superconducting gap 4, (see
Section 3) is larger than the tunnelling ¢, it is easy to see that the
single particle tunnelling is exponentially suppressed. The only
surviving coupling is quite naturally the Josephson coupling be-
tween the two chains and is of the form

J, "

Fig. 1. A two-leg ladder made of two interacting one-dimensional systems coupled
by a tunneling term of either cooper pairs (fermions) or single particles (bosons).

Hp= =J, [dx @, 0w, Xy, @, ) + hc.) 3

for which a pair is hopping from one chain to the next. The Jo-
sephson tunnelling J, is of the order of t?/4,.
Thus we will consider in the following a system described by:

H=H°+ Hp 4

in which Hp is either (2) or (3) and study the interplay in the
currents resulting from such Hamiltonian.

3. Bosonization reminder

In order to treat this problem we use the bosonized re-
presentation of interacting one-dimensional systems. The method
is well documented [5] and we will only do a brief reminder here.

Let us treat first the case of bosons. The density of one-di-
mensional bosons can be expressed in term of a smooth field ¢ (x)
as

PX) = po — %de(»o +pg Y, €2PVox-1i00) ;
p 6

where j=1, 2 is the chain index, p is an integer and po is the
average density which for simplicity we have assumed to be
identical on the two legs. This expression of the density combined
with an expression of the single particle creation operator as a
function of another smooth field 6 (x)

V00 = [ 00e ®)

provides a dictionary to go from the expressions of the Hamilto-
nian in terms of individual bosonic excitations to the collective
ones that are density and phase (hence related to the current)
excitations. Since one-dimensional interactions prevent the ex-
istence of individual excitations at the profit to collective ones, the
new basis ¢, 6 is thus a much more convenient basis to use. Of
course the ¢ and @ are not independent operators but are related
by the canonical relation

1 .

X), —VOX)] =1i6(x — X’
[¢ x) . x)] ( ) )
The relation embeds at the operator level for one dimension the
well known duality between phase fluctuations and density fluc-
tuations that exists in any superfluid or superconductor. @ is thus
related to I7(x) the momentum conjugates to ¢ by

®

As a function of these new variables one can show that the
Hamiltonian of a one-dimensional interacting bosonic system can
be put under the form

I(x) = lve(x)
T

1 U;j
H}) =9 fdx((uﬂ(j)(V@j(X))Z + (#j)(vqﬁj(x))z)

T

©)]

where all the interactions, bandstructure, etc. for the bosons have
been absorbed in the two non-universal parameters (the so-called
Luttinger parameters) u; and K;. u; has the dimensions of a velocity
and is the sound velocity of the excitations in the system. Kj is a
dimensionless parameter that controls the decay of the correlation
functions in the system. The form of the Hamiltonian (9) is the
universal form of the so-called Tomonaga-Luttinger liquids that
described the low energy physics of many one-dimensional sys-
tems. The value of the parameters depends not only on the in-
teractions and kinetic energy but also on the class of problem
considered (fermions, spins, bosons, range of interactions, etc.). For
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