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a b s t r a c t

We consider a normal–superconducting junction in order to investigate the effect of new physical in-
gredients on waiting times. First, we study the interplay between Andreev and specular scattering at the
interface on the distribution of waiting times of electrons or holes separately. In that case the distribution
is not altered dramatically compared to the case of a single quantum channel with a quantum point
contact since the interface acts as an Andreev mirror for holes. We then consider a fully entangled state
originating from splitting of Cooper pairs at the interface and demonstrate a significant enhancement of
the probability to detect two consecutive electrons in a short time interval. Finally, we discuss the
electronic waiting time distribution in the more realistic situation of partial entanglement.

& 2016 Published by Elsevier B.V.

1. Introduction

Markus Büttiker was certainly one of the most influential sci-
entists in the field of mesoscopic physics. Among all his important
contributions, time in quantum mechanics has a peculiar flavor
since it occupied his mind at the right beginning and at the end of
his carrier. Intrigued at first by the traversal time of an electron
through a tunnel barrier [1,2], he came back to this topic after the
emergence of “on-demand single electron sources” [3–13], which
he greatly contributed to develop [14–23], via the concept of
waiting time distribution (WTD) [24–26].

Charge transport at the nanoscale is known to be stochastic due
to the quantum nature of particles [16]. Therefore, going beyond
the knowledge of average quantities, such as the average electro-
nic current, appears to be unavoidable and extremely fruitful at
the same time. A deep physical insight can indeed be inferred from
the fluctuations of the signal and extracted from various ob-
servables. Noise [16] and Full Counting Statistics (FCS) [27–29],
namely the second moment of current fluctuations and the sta-
tistics of charges transferred during a long time interval, are
among the most popular quantities and have been proved to be
powerful tools. With the development of electron quantum optics
[30] and the progress in single electron detection at high

frequencies [4,31–33], it is now relevant and possible to consider
electron dynamics and time resolved quantities at quantum me-
chanical time scales (typically nano-seconds and below). There-
fore, new theoretical tools have been developed to describe the
current fluctuations at such time scales, such as finite frequency
noise [4,16,20,21,34–36] and FCS [37–42], Wigner functions [43],
or the WTD [24–26,44–53]. The latter, describes the statistical
distribution of time intervals between the detection of two elec-
trons and therefore gives accurate information about correlations
between subsequent electrons.

The WTD has been studied for particularly simple systems like
single and multiple electronic quantum channels connected to two
normal leads via a Quantum Point Contact (QPC) [25,49,52], a
quantum capacitor [24,53], a double quantum dot [45,49], a train
of Lorentzian pulses [26,47] or a quantum dot connected to a
normal and a superconducting lead [48,54], among others. In this
paper we revisit the physics of Normal–Superconducting (NS)
junction through the point of view of waiting times in order to
illustrate the effect of superconducting correlations and en-
tanglement [55,56,59,60] on their distribution. Indeed, as we will
discuss later, such a system may emit entangled electrons in the
normal part, and leads to interesting features in the WTD.

The paper is organized as follows. In Section 2, we describe the
model used for the NS junction and the formalism needed for
computing the WTD. In Section 3, we discuss the effect of the
transparency of the barrier (the energy dependence of the An-
dreev reflection) when the detection process is sensitive to only
one electronic spin species and a certain range of energy. Section 4
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is devoted to the effect of entanglement between spin up and spin
down electrons emitted from the superconducting part, on the
WTDs. We finally conclude and discuss some perspectives in
Section 5. Moreover, for the sake of clarity, technical details are
moved to the appendices. Appendix A demonstrates the formal
analogy between our setup and a single quantum channel con-
ductor for a specific detection process whereas important steps for
the numerical and analytical calculations of the WTD in the en-
tangled case are explained in Appendix B.

2. Model

One very important consequence of superconductivity is the
existence of Andreev reflection. Such a phenomenon arises be-
cause the superconducting device cannot accommodate any single
particle excitation with energy below the gap Δ. Therefore, if a
single particle like an electron or a hole flows from the normal part
to the superconducting part with an energy below this threshold it
can only be scattered back at the interface. However, there are
now two possibilities. An electron (a hole) can be either normally
reflected (specular reflection), that is to say, reflected as an elec-
tron (a hole) or converted to a hole (an electron). This is the so-
called Andreev reflection which originates from the fact that the
incoming electron finds a partner to create a Cooper pair which
can enter in the superconductor and leave a hole behind.

To be more specific, the system of interest is a polarized NS
junction (with an s-wave superconductor), at zero temperature, as
presented in Fig. 1. The superconductor chemical potential μS is set
to be at a potential eV above the Fermi level EF of the normal metal.
In such a situation, there is an incident hole, coming from the
metal, that can be either normally reflected or Andreev reflected
as an electron. Another way of picturing the Andreev effect is to
think about the inverse configuration where a Cooper pair in the
superconductor (at energy μS and zero momentum for an s-wave
superconductor) splits at the interface and gives birth to an en-
tangled pair of electrons. From now on, we will take eV much
smaller than the superconducting gap Δ in order to focus on this
sub-gap phenomenon. This also has the benefit to make the An-
dreev time Δ≡t h/A (the typical time needed for an Andreev event)
much smaller than τ ≡ ( )h eV/ (the typical time separation of two
single particle wave packets emitted in the normal metal [25,61]).
This allows us to assume that Andreev events are instantaneous
and make use of scattering theory. In addition, this assumption
allows one to linearize the dispersion relation around μS as

( ) =E k v kF , with E and k measured from μS and its corresponding
momentum (or around the Fermi level since ⪡eV EF and μ )S .

At the interface, the scattering is in general not perfect and

both normal and Andreev reflection will play a role. In order to
describe this effect, we use the standard Blonder–Tinkham–Klap-
wijk (BTK) model [62] which has been widely used in the litera-
ture. The junction is modeled by a point-like barrier potential

λ δ( ) = ( )U x ZE x2 F F , where λF is the Fermi wavelength and Z is a
parameter measuring the strength of the barrier. It is then possible
to compute the scattering matrix of this setup exactly and obtain
the normal and Andreev transmission/reflection coefficients
[62,63]. We do not reproduce these results in the present paper
but give the corresponding numerical values of the coefficients
when necessary.

Fig. 1 illustrates the scattering processes that we are now going
to describe mathematically. The incident holes of energies μ − ES
lying between EF and μs, arriving from the left and propagating to
the right will be either normally reflected as holes of the same
energies with amplitude rN or Andreev reflected as electrons of
energies μ + ES with amplitude rA. The incoming scattering state is
therefore a Slater determinant of holes of the form [57–59]

∏ψ| 〉 = | 〉
( )=

( ) ↑ ( ) ↓c c 0 ,
1E

eV

k E k Ein
0

, ,

where | 〉0 stands for the filled Fermi sea up to μS in the normal
part. However, in the electron language, this state is just the Fermi
sea | 〉F filled up to EF instead of μS . In the following, we will rather
use the electronic picture to simplify the notation but both pic-
tures are equivalent [59]. Due to scattering at the interface, the
outgoing state is therefore a superposition of reflected holes, en-
tangled electrons and non-entangled electrons [56–59,62,63]

∏
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Indeed, it is pretty straightforward to see that the previous equa-
tion, for a given energy, gives birth to three kinds of term with
different levels of complexity. The terms | 〉F and

| 〉( ) ↑
†

− (− ) ↓
†

( ) ↓
†

− (− ) ↑
†c c c c Fk E k E k E k E, , , , correspond to non-entangled contribu-

tions whereas ( − )| 〉( ) ↑
†

− (− ) ↓
†

( ) ↓
†

− (− ) ↑
†c c c c Fk E k E k E k E, , , , describes fully en-

tangled electrons originating from the splitting of a Cooper pair at
the interface. When Andreev reflection is absent (ra¼0), the Fermi
Sea is unperturbed by the interface and nothing interesting hap-
pens. Counter-intuitively, perfect Andreev reflection does not lead
to perfect entanglement. On the contrary, the state is a Slater de-
terminant of non-entangled electrons and the NS junction acts as a
conventional electron source [58]. It appears that the maximally
entangled situation arises when Andreev and normal reflection
probabilities are both equal to one half. Nevertheless, the WTD of a
fully entangled state has never been studied to our knowledge and
we will take the opportunity to study it in this paper before
considering the general and more realistic state emitted at the
interface.

In order to conclude this section, we recall a few definitions
about WTDs. As mentioned in the introduction, the waiting time τ
is defined as the time delay between the detection of two single
particles. Due to scattering and the quantum nature of particles,
this time is a random variable, in which distribution (the WTD)
brings an elegant and instructive picture of the physics. For sta-
tionary systems, namely when there is no explicit time depen-
dence, the WTD τ( ) depends on τ only (and not on absolute
time) and is closely related to the Idle Time Probability (ITP) Π τ( ),
the probability to detect no electron during a time interval τ

τ τ Π τ
τ

( ) = 〈 〉 ( )
( )

d
d

, 3

2

2

where τ Π τ τ〈 〉 = − [ ( ) ]τ=
−d d/ 0

1 is the mean waiting time [49]. To go
further, we must now specify the detection procedure to compute
the WTD. In what follows we will assume perfect single electron

Fig. 1. Left: schematic picture of a Normal–Superconducting junction. A hole ap-
proaching the interface from the normal part is either normally reflected or Andreev
reflected back as an electron. A single electron detector is positioned to detect
electrons from Andreev events. Right: energy diagram of the setup. The super-
conducting chemical potential μS is set to an energy eV above the Fermi energy of the
normal part and the gap Δ is much larger than the potential difference eV.
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