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H I G H L I G H T S

� If two flexural modes are mechanically coupled and one of them is driven the other mode responds.
� The response is similar to the parametric resonance in the classical physics.
� In the quantum case, the non-driven mode responds even below the classical threshold.
� The magnitude of the response is comparable to the amplitude of the zero-point motion.
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a b s t r a c t

We investigate the behaviour of two non-linearly coupled flexural modes of a doubly clamped suspended
beam (nanomechanical resonator). One of the modes is externally driven. We demonstrate that classi-
cally, the behavior of the non-driven mode is reminiscent of that of a parametrically driven linear os-
cillator: it exhibits a threshold behavior, with the amplitude of this mode below the threshold being
exactly zero. Quantum-mechanically, we were able to access the dynamics of this mode below the
classical parametric threshold. We show that whereas the mean displacement of this mode is still zero,
the mean squared displacement is finite and at the threshold corresponds to the occupation number of 1/
2. This finite displacement of the non-driven mode can serve as an experimentally verifiable quantum
signature of quantum motion.

& 2016 Published by Elsevier B.V.

1. Introduction

Observation of quantum effects in mechanical resonators, first
reported in Ref. [1] for a GHz resonator read out by a super-
conducting qubit, became a breakthrough in the field of nano- and
optomechanics. Subsequently, quantum effects were also con-
firmed in a mechanical drum resonator coupled to a super-
conducting microwave cavity [2] and in cavity optomechanical
systems [3,4]. This breakthrough shifted the interest to the pos-
sible use of mechanical systems as quantum state transducers [5–
7] and eventually to the construction of integrated coherent me-
chanical-based circuits. Investigation of fundamental properties of
coupled mechanical resonators is essential to achieve this goal.

Coupling of linear mechanical resonators or different modes of
the same resonator has been extensively studied in the literature
[8–12]. Recently, first experimental [13–15] and theoretical

[16–19] studies of non-linearly coupled resonators were made
available. They are facilitated by the fact that many available na-
nomechanical systems, such as suspended beams or membranes,
are inherently non-linear due to elongated-induced stress. In the
single-electron tunneling regime, non-linearities may be even
stronger due to the Coulomb effects and can be controlled by
nearby electric gates [20–23]. A basic property of a non-linear
mechanical system is interaction between different vibrational
modes. Stronger nonlinearity induces stronger coupling between
these modes, which is highly beneficial for building integrated
coherent circuits, classical as well as quantum ones.

Classically, non-linear systems exhibit extremely rich dynami-
cal behavior, and in seemingly close situations they may behave
very differently. Quantum effects in non-linear systems have been
discussed in several contexts, including mechanical resonators
[24–26], and are generally recognized as a very complex and dif-
ficult problem. Non-linearity is essential for quantum position
detection, since the mean expectation value of the displacement
operator in a linear system is zero. The non-linear nature of a
mechanical resonator can facilitate the transition into the quan-
tum regime [27].
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In this paper, we concentrate on one important aspect of
quantum non-linear mechanical resonators, which is interaction
between vibration modes. We specifically consider a situation,
when only one mode is externally driven. We first solve the clas-
sical problem and find that it is reminiscent of the parametrically
driven oscillator, so that the non-driven mode only gets excited if
the driving force exceeds certain threshold. Below this threshold,
the classical displacement of the non-driven mode is exactly zero.
Subsequently, we solve the quantum problem below this (classi-
cal) threshold using the Lindblad master equation technique and
discover that quantum-mechanically, the non-driven mode gets
excited to the states with non-zero number of phonons, up to the
average occupation of one-half. This means that the occupation of
the non-driven mode below the threshold is a quantum-me-
chanical effect and can serve as a signature of quantum motion. It
also opens the way for detailed investigation of quantum dy-
namics of coupled mechanical oscillators such as for example
entanglement generation or quantum state transfer between the
modes.

The paper is organized as follows. In Section 2 we outline the
model and derive equations of motion. We continue with the
classical treatment of the equations in Section 3, where we cal-
culate the amplitudes of mechanical motion of the two modes. We
quantize the system and investigate its quantum dynamics, sol-
ving the Lindblad equations, in Section 4. In Section 5 we present
the conclusions.

2. Model

To describe the interaction between the flexural modes of a
doubly clamped nanomechanical beam, shown in Fig. 1, we use
the Euler–Bernoulli equation [28]. We first derive the Hamiltonian
of the beam. The latter is subject to the driving force ˜(˜)F t , which
can be of optical or magnetomotive in origin and induces the time-
dependent bending profile ˜( ˜ ˜)u y t, . Displacement of the beam re-
sults in elongation which in turn induces the non-linear tension T̃ .
For simplicity, we use below the reduced coordinate = ˜y y L/ along
the beam and the reduced displacement = ˜u u r/ , where L and r are
the length and the radius of the beam, which we take to be of a
circular cross-section. Also we introduce the dimensionless time

ρ= ˜t D SL t/ 4 , with D being the bending rigidity, ρ the mass density
and S the area of the cross section of the beam. The dimensionless
tension = ˜T L T D/2 is given by Ref. [28],

∫= + ( ″( )) ( )T T
K

dy u y t
2
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where T0 is the residual tension of the beam and =K r S I/2 , with I
being the second moment of inertia. We denote by primes and
dots spatial and temporal derivatives, respectively. The applied

force F̃ , for which we use the dimensionless expression = ˜F L F Dr/4 ,
can have static Fdc and time dependent Fac components which
result in dc and ac displacements of the beam

( ) = ( ) + ( )u y t u y u y t, ,dc ac respectively. The equations of motion for
these components have the form [29,32,30]

⁗ − ″ = ( )u T u F ; 2dc dc dc dc

η¨ + ̇ + [ ] − ( ⁎ ″ + ″ ) − ⁎ ″ = ( )u u u T u T u T u F . 3ac ac ac dc ac ac ac ac

Here, Tdc is the sum of the residual tension and the one resulting
from the dc displacement; Tac is the tension term which contains
all terms that are linear in uac, and Tn is quadratic in uac. The op-
erator [ ]u is defined as

[ ] = ⁗ − ″ − [ ] ″ ( )u u T u T u u . 4dc ac dc

The first three terms on the left-hand side of Eq. (3) determine the
linear response of the system. The last two terms introduce the
nonlinearities with uac

2 and uac
3 .

The eigenfunctions ξ ( )yn and the eigenvalues ωn of the operator
correspond to the mode shapes and frequencies of these modes

respectively [30]. The ac displacement is expanded in terms of the
mode shapes as ξ ω( ) = ∑ ( ) ( )=

∞u y t y u t, / 2ac n n n n1 . Inserting this ex-
pansion in Eq. (3) and taking the driving force to be a periodic
function with the amplitude F0 and the frequency ωd provides a
set of coupled equations of motion for the displacements of the
modes, un(t),
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where the summation runs over all the eigenmodes, the values of
∫ ξ ξ= ′( ) ′( )I y y dyij i j depend only on the shapes of the modes i and j,

∫ ξ= ( )S y dyn n is the mean displacement of the mode n per unit

deflection, and ∫ ξ= ′ ( ) ′( )A u y y dyi dc i depend on the static displace-
ment. These coefficients can be calculated numerically. In the case
of zero dc displacement, Ai is zero, and the last term on the left-
hand side of the Eq. (5) couples the modes. Here we assume that
the beam is in the strong bending regime where the dc displace-
ment is big enough so that the geometrical nonlinearity plays an
important role, but the time-dependent component of the de-
flection is small enough, and one can disregard nonlinearities
which it causes. In this situation, we can disregard the last term in
Eq. (5). This statement imposes constraints on the ac displacement
which can be found from the following inequality,
∑ ( + ) ⪢ ∑A I A I u u I I u u u2i j i nj n ij i j ijk ij kn i j k, , see Ref. [17] for more details.

Note that since the external force is spatially homogeneous, it
only can excite modes with odd n, for which ≠S 0n . Our focus here
is mode interaction, and therefore we only consider two modes,
one of which is odd (driven), and another is even (not driven).
Specifically, we take n¼2 and n¼3. This choice has an additional
convenience since, as we show below, these modes are coupled
the strongest in the quantum regime due to the frequency
matching. For simplicity, we also disregard the terms with i¼ j in
Eq. (5). They only renormalize the behavior of single modes
[28,31]. The generalization of our theory to the case when these
terms are present is straightforward. We are thus left with two
coupled equations of motion,
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where =F S Fef 3 0 and γ = A I K/23 22 . Note that the intermode detun-
ing Δ ω ω= −2 2 3 is tunable by udc and thus can be modulated by

u y
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Fig. 1. Schematic representation of a doubly clamped nanomechanical resonator of
the length L and the radius r. An applied force induces the bending profile ˜( ˜ )u y as
indicated.
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