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H I G H L I G H T S

� We evaluate the quantum corrections to the Edelstein and spin Hall effects.
� The corrections to the spin Hall conductivity add up to zero as required by an exact identity.
� The corrections to the Edelstein conductivity are absorbed in the renormalized scattering time.
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a b s t r a c t

We evaluate the spin polarization (Edelstein or inverse spin galvanic effect) and the spin Hall current
induced by an applied electric field by including the weak localization corrections for a two-dimensional
electron gas. We show that the weak localization effects yield logarithmic corrections to both the spin
polarization conductivity relating the spin polarization and the electric field and to the spin Hall angle
relating the spin and charge currents. The renormalization of both the spin polarization conductivity and
the spin Hall angle combine to produce a zero correction to the total spin Hall conductivity as required by
an exact identity. Suggestions for the experimental observation of the effect are given.

& 2016 Published by Elsevier B.V.

1. Introduction

Weak localization (WL) is the result of quantum interference
corrections to the semiclassical theory of transport [1,2]. It man-
ifests itself in good conductors as a negative or positive correction
to the electrical conductivity depending on the symmetry prop-
erties of the system. The functional form varies with the effective
dimensionality of the sample, behaving as a square root of tem-
perature in three dimensions and logarithmically in two dimen-
sions [3]. In the latter case, the resummation of the logarithmic
correction via the renormalization group eventually leads to the
Anderson localization transition in = + ϵd 2 dimensions [4,5]. In
the presence of spin–orbit coupling (SOC), the correction is posi-
tive and hence manifests as an antilocalizing behavior [6]. SOC
affects WL because it yields a finite spin relaxation time, which
introduces a cutoff in the logarithmic singularity associated with
the so-called triplet channel of the particle-particle ladder, known

as the Cooperon. Since the singlet and the triplet channels con-
tribute to WL with opposite signs, the elimination of the triplet
leaves the singlet alone, which then produces the antilocalizing
behavior. In metallic conductors and doped semiconductors SOC
was traditionally attributed to the electric field of impurities,
which do not affect the nature of the electron eigenstates. In the
last two decades, however, the two-dimensional electron gas
(2DEG) has become one of the most analyzed model systems for
electrical transport, due to the possibility of realizing it in semi-
conducting systems, and more recently at metallic [7] and oxides
[8] interfaces. The realization of the 2DEG leads to the breaking of
inversion symmetry with respect to the axis, say the z axis, per-
pendicular to the 2DEG plane, say the x and the y plane. In these
circumstances, in the presence of a finite spin–orbit interaction,
Bychkov and Rashba have proposed a model Hamiltonian [9],
which, besides the standard effective-mass kinetic energy term,
contains a spin–orbit coupling term linear in momentum
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momentum operator, m is the effective mass and α a SOC constant
with sx and sy the standard Pauli matrices. The Rashba Hamilto-
nian equation (1) has been extensively studied over the last 20
years, especially aiming at the development of new spintronic
functionalities [10]. In this respect the spin Hall effect (SHE) [11–
15] and the current-induced spin polarization effect [16,17]
(known also as the Edelstein or inverse spin-galvanic effect) have
been the focus of an intensive dedicated research (see [18] for a
recent review). These effects, whose precise definition will be gi-
ven later on, manifest due to the coupling of charge and spin de-
grees of freedom and hence introduce, besides the standard
electrical conductivity, new transport parameters. These are de-
fined as the linear coefficients relating the spin polarization and
the spin current to the applied electric field
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where the double brackets indicate the quantum and statistical
average. σ EC and σ SHC are referred to as the spin polarization or
Edelstein and the spin Hall conductivities, respectively. As for the
electrical conductivity, these transport parameters can be studied
with the well-known impurity technique. One advantage of this
technique [19], based on standard diagrammatic perturbation
theory, is the appearance of the semiclassical Drude–Boltzmann
theory of transport at the leading approximation in an expansion
of the small parameter τℏ (ϵ )/ F , where ϵF and τ are the Fermi energy
and the elastic scattering time, the only two parameters char-
acterizing a disordered Fermi gas. In such an expansion, WL arises
in the next-to-leading approximation in the expansion in τℏ (ϵ )/ F .

WL effects in the presence of the Rashba SOC described by Eq.
(1) have been analyzed by several authors, most of the attention
having been focused on the electrical conductivity only [20–25],
with some works considering the spin conductivity as well [26,27].
It is worth noticing that the latter two works use semiclassical
functional integration methods. It is the aim of the present work to
extend this analysis to the other transport parameters mentioned
above, whose experimental study has developed considerably in
the last few years [28,7]. We find that σ EC and the spin Hall angle
γ σ σ= e /SH drift

SHC
0 acquire logarithmic corrections which can be ab-

sorbed in terms of the renormalization of the scattering time ap-
pearing in the electrical conductivity s0. We emphasize that sSHCdrift is
not the full spin conductivity σ SHC which would be measured in an
experiment [29]. As will be shown in the next section, σ SHC can be
expressed in terms of σ EC and sSHCdrift. The renormalizations of both
σ EC and γSH compensate in such a way that σ SHC has no correction
as expected on general arguments [30].

The plan of the paper is as follows. In the next section we in-
troduce the disordered Rashba model and review the theory of σ EC

and σ SHC to the leading order in the parameter τℏ (ϵ )/ F within the
impurity technique. This is necessary to prepare the ground for the
following sections. Section 3 deals with the WL localization cor-
rections in the presence of the Rashba SOC. The evaluation of the
electrical conductivity is reviewed as an example. Section 4 pre-
sents the calculation of the WL corrections to σ EC and σ SHC . Section
5 provides a discussion of the results obtained, whereas technical
points of the calculations are given in the appendices at the end of
the paper. From now on, if not otherwise specified, we will work in
natural units ℏ = =c 1.

2. The disordered Rashba two-dimensional electron gas at
leading order in τ(ϵ )1/ F

In the presence of scattering from impurities, the 2DEG Ha-
miltonian of Eq. (1) acquires an additional random potential term

( )U r defined by the averages
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where = ( )x yr , and ′ = ( ′ ′)x yr , are the coordinate operators,
π=N m/20 the two-dimensional density of states and τ the elastic

scattering time. At leading order in the expansion parameter
τ(ϵ )1/ F , the self-energy is given by the self-consistent Born ap-

proximation
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where GR A, denotes the retarded and advanced Green functions. As
discussed in [31,32], in the presence of Rashba SOC the Green
function has a nontrivial structure in spin space, whereas the self-
energy remains diagonal, Σ Σ σ= 0 0, σ σ σ= + +G G G G0 0 1 1 2 2. Ex-
plicitly we have
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The Edelstein (EC) and spin Hall (SHC) conductivities are defined
in terms of the spin polarization and spin Hall current induced by
an applied electric field taken along the x axis for definiteness's
sake = − ∂E Ax t x. The corresponding Kubo formulae are
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where the bare vertices σ=s /2y y , σ=j p m/2y
z z

y and = − ^j evx x,

ασ^ ( ) = −v p mp /x x
y denote the operators for spin polarization, spin

current and charge current, respectively. The evaluation of the
response functions (7) and (8) involves the standard bubble dia-
grams of the Green function lines obtained by the self-consistent
Born approximation (4) decorated by the insertion of the impurity
ladder. This corresponds to the inclusion of the so-called vertex
corrections, which lead to renormalized vertices [31].

The expression (7) for the EC becomes

[ ]∑σ
π

= − ^ ( )
( )

e
S G v Gp

2
Tr ,

9
EC y R

x
A

p
p p

where the vertex renormalization can be attributed either to the
left spin vertex or to the right current vertex and we have dropped
the dependence on the frequency argument of the Green function.
In the former case, by using the renormalized spin vertex indicated
by a capital letter σ τ τ σ τ τ= (( + ) ) ≡ ( ) = ( )S x x s1 / /2 /y y

DP
y

DP
y2 2 , one

obtains [16]

σ α τ= − ( )e N , 10EC
0 0

where the subscript 0 in sEC0 indicates the lowest order in the
parameter τ(ϵ )1/ F . We have defined the parameter α τ=x p2 F and
introduced the D'yakonov–Perel relaxation time
τ τ= (( + ) )x x2 1 /DP

2 2 , pF being the Fermi momentum in the absence
of the Rashba SOC. The model has two small parameters τ(ϵ )1/ F

and α v/ F with =v p m/F F , in terms of which the above paramater
α τ= ( )(ϵ )x v4 / F F can be expressed.

Similarly, for the SHC one has the expression
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