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HIGHLIGHTS

e We analyze the periodicity of persistent currents in quantum spin Hall (QSH) loops.

e One loop is partly covered by a superconductor.

o Time-reversal symmetry and parity conservation can constrain the period.
e A period of twice the quantum of flux is characteristic of QSH insulators.

ARTICLE INFO ABSTRACT

Article history:

Received 13 July 2015

Received in revised form

14 September 2015

Accepted 17 September 2015
Available online 14 March 2016

Keywords:

Topological insulators
Superconductivity
Persistent current

We analyze the periodicity of persistent currents in quantum spin Hall loops, partly covered with an s-
wave superconductor, in the presence of a flux tube. Much like in normal (non-helical) metals, the
periodicity of the single-particle spectrum goes from &, = h/e to &,/2 as the length of the superconductor
is increased past the coherence length of the superconductor. We further analyze the periodicity of the
persistent current, which is a many-body effect. Interestingly, time reversal symmetry and parity con-
servation can significantly change the period. We find a 2@-periodic persistent current in two distinct
regimes, where one corresponds to a Josephson junction and the other one to an Aharonov-Bohm setup.

© 2016 Published by Elsevier B.V.

1. Introduction

In a seminal work from 1986, Biittiker and Klapwijk discussed
the flux sensitivity of a piecewise normal and superconducting
metal loop [1], as showed in Fig. 1(a). The model they considered in
order to describe such a system - a single electronic channel with a
linearized spectrum - is as simple as it gets, yet captures the
characteristic features associated with persistent currents in me-
soscopic loops. Indeed, in the Andreev approximation, and in the
low-energy regime, microscopic details of the model hardly matter.
As long as the length of the normal region is much larger than the
coherence length of the superconductor, the persistent current will
have the familiar saw tooth shape, both in the normal and super-
conducting regime. What changes though between the two regimes
is the periodicity of the superconducting current with the applied
flux. Following a simple calculation of the excitation spectrum,
Biittiker and Klapwijk were able to show how as the length of the
superconducting region is progressively increased, the periodicity of
the persistent current is halved, going from @, to &;/2, with
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@, = h/e being the quantum of flux. The almost thirty years since
the 1986 paper have seen many exciting discoveries in the field of
mesoscopic physics. One of them is the advent of topological in-
sulators [2-5]. Of particular interest to us here is the case of
quantum spin Hall insulators and their one-dimensional helical
edge states, for several reasons. They first offer a new realization of
1D Dirac physics, that goes beyond linearization of quadratic spectra
at the Fermi points. Second, helicity, that is the locking of direction
of spin with the direction of motion, protects transport against
time-reversal invariant impurities. More precisely, single-particle
elastic backscattering is forbidden by time-reversal symmetry,
leading the community in a vast effort to better understand the
effect of inelastic scattering in these systems [6-16]. Third, the in-
terplay of helicity and superconductivity imposes a constraint on
the parity of the number of quasi-particles, or fermion parity (FP), in
SNS junctions based on helical liquids, as the one depicted in Fig. 1
(b). This results in a so-called fractional Josephson effect [17-19],
with a @g-periodic supercurrent. A few works have already dis-
cussed the physics of persistent currents in helical rings, high-
lighting the effects of magnetic and non-magnetic impurities [20],
or the hybridization between edge states in narrow quantum spin
Hall rings [21]. In the present paper, we revisit the analysis of
Biittiker and Klapwijk in the context of quantum spin Hall in-
sulators. In particular we analyze the crossover between the normal
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Fig. 1. (a) Original setup as proposed in Ref. [1]. A piecewise normal and super-
conducting loop of size L comprising a single conducting channel is threaded by a
magnetic flux &. Close to the Fermi points, there are four available modes: spin up
or spin down right movers (blue solid lines) and spin up or spin down left movers
(red solid lines). The normal region has length dy while the superconducting region
has length ds. (b) A quantum spin Hall loop, partly covered by an s-wave super-
conductor (shaded region) and threaded by a flux ®. Each edge hosts half the de-
grees of freedom available in setup (a), resulting in two helical channels physically
separated by the insulating bulk. (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)

persistent current and the supercurrent, as the length of the su-
perconducting region is increased, and discuss their periodicity. We
argue that a constraint from time reversal symmetry doubles the
period in the normal case, as compared to Ref. [1]. A similar effect is
already known to occur in the superconducting case, and was put
forward by Zhang and Kane in Ref. [22].

The outline of the paper is as follows. In Section 2, we start by
discussing the model and the various symmetries that constrain
the periodicity at a given edge, both in the normal and super-
conducting regimes, and contrast the results with the case of a
non-helical metal. Then, in Section 3, we comment on the total
persistent current, when both edges are taken into account. Fi-
nally, in Section 4, we give some conclusions.

2. Model and persistent current at a given edge
2.1. Normal helical ring

2.1.1. Single-particle spectrum

We are interested in modeling the setup of Fig. 1(b). To that
end, we first restrict our analysis to a single edge, say the outer
one. Before following in the footsteps of Ref. [1] and computing
the excitation spectrum in the superconducting case, let us con-
sider first the normal case. We model the outer edge by a 1D
segment of size L along the x direction and impose periodic
boundary conditions. The flux is included via the minimal sub-
stitution of the momentum operator p, = — i%d,,

ﬁx_)ﬁx - qA )

with g being the charge of the particles and A = @/L a vector
potential. In the following we take q = - e, for electrons. At en-
ergies much smaller than the bulk band gap, the helical states are
well described by Dirac fermions, with the following single par-
ticle Hamiltonian:

H = Ve(p, + eA)ss, @)

where vr is the Fermi velocity and o3 is the usual Pauli matrix,
acting on spin space. Right moving electrons have therefore spin
up while left moving electrons have spin down (the situation is
reversed at the inner edge). The single particle spectrum consists
of two branches

£, n(®) = + ﬁvpzT”(n + 3),

Py 3)

with &, = h/e. Corresponding eigenstates are of the form
¢, .0 =y, | JL, @)

with », =(1,0),  =(0, 1) and the momentum k, = 2zn/L is
quantized due to periodic boundary conditions.

2.1.2. Excitations

In the absence of the flux, @=0, we take the chemical potential
to be at the Dirac point, that is, all states with negative energy are
filled. Given the Hamiltonian of Eq. (2), nothing indicates that the
spectrum is bounded from below, which would mean the ground
state energy is infinite. Of course, in a real system, there is a nat-
ural cutoff scale, as the spectrum is bounded both from below and
above by the bulk bands. However, at this stage one can let the
cutoff go to infinity and renormalize the ground state energy
without affecting the general physics which is given by the low
energy excitations with respect to the Fermi sea. We then define
the ground state 10), such that

C;nIO)O =0, n<0, (5)

Cn0)=0, n>0 6)

and we impose that I0), has zero energy. The index 0 here serves
as a reminder that the state is defined for @=0. There are two
types of excitations on top of 10),. One can create a particle in the
conduction band, for instance c .0, or create a hole in the
valence band, for instance c, ,.(l0). Importantly, particle and hole
excitations are independent. We can also define a many-body
Hamiltonian (still for @=0) as

L
_ . F .
H= fo dx : PIOHPX):

with P(x) = [y, (X), y. *)1" being a quantum field and where :...:
indicates normal-ordering, ensuring that indeed ((0IHIO), = 0.
Among the many possible excited states, some will play a parti-
cular role in the following. These are the states with a finite
number of particles, but no particle-hole excitations. They are
obtained by filling positive energy states or emptying negative
energy states in the following way. The state with N;_, particles is
defined by

N
INYo = [ ¢/J0) ifN;>0,
n=1 (8)

N-1
INYo = [] ¢;_n0) ifN;<O.
n=0 9

In the following we use the notation IN,, N_), in order to refer to a
state with N, right movers and N_ left movers. The energy of these
many-body states is simply given by [23]
271

EN, N, @ = 0) = v > NN+ 1.

j== (10
This prompts us to introduce the so-called chiral current operators
Lo =y, 11
as well as the particle current operator

J&) = ve: PIX)osP(x): . (12)
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