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H I G H L I G H T S

� Using Landauer–Büttiker formalism, the minimal conductivity of monolayer graphene with Rashba spin–orbit couplings was obtained in continuum
and tight binding models.

� Finite and infinite samples are considered.
� For finite samples depending on its orientation with respect to the electrodes, the conductivity can be suppressed compared to that obtained for infinite
samples.

� This effect can be explained by a simple analysis of the boundary conditions.
� Owing to the spin–orbit interactions an oscillation of the conductivity is observed and explained as interference of states corresponding to different
energy pockets of the low energy Fermi surface.
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a b s t r a c t

We study theoretically the minimal conductivity of monolayer graphene in the presence of Rashba spin–
orbit coupling. The Rashba spin–orbit interaction causes the low-energy bands to undergo trigonal-
warping deformation and for energies smaller than the Lifshitz energy, the Fermi circle breaks up into
parts, forming four separate Dirac cones. We calculate the minimal conductivity for an ideal strip of
length L and width W within the Landauer–Büttiker formalism in a continuum and in a tight binding
model. We show that the minimal conductivity depends on the relative orientation of the sample and the
probing electrodes due to the interference of states related to different Dirac cones. We also explore the
effects of finite system size and find that the minimal conductivity can be lowered compared to that of an
infinitely wide sample.

& 2016 Published by Elsevier B.V.

1. Introduction

More than half a century has passed since Landauer derived a
formula for the conductance of two terminal coherent devices [1].
Then 25 years ago Markus Büttiker realized that the two terminal
Landauer formula can be extended to multi-terminal devices [2].
Now, in the literature this approach is commonly called Landauer–
Büttiker formalism. Over the years it becomes the standard tool for
investigating various quantum systems in nanophysics (for a re-
view see Refs. [3–6]). This approach has become an integral part of

theoretical investigations of modern solid states systems such as
graphene [7]. In the last decade different types of graphene na-
nostructures proved to be one of the most technologically pro-
mising and theoretically intriguing solid state systems. The dy-
namics of low energy excitations in graphene is governed by an
effective Hamiltonian corresponding to massless two dimensional
Dirac fermions. Hence many physical quantities such as the con-
ductivity, the quantized Hall response and optical properties are
markedly different from those of conventional two dimensional
electron systems [8]. In bilayer graphene, the interlayer hopping
results in a trigonally warped Fermi surface which breaks up into
four separate Dirac cone at low energies. The signatures of this
novel electronic structure have been studied first experimentally
by Novoselov et al. [9] and theoretically by McCann and Fal'ko [10].

Graphene samples, despite the vanishing density of states,
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show a finite conductivity at the charge neutrality point (at zero
Fermi energy). This feature of massless Dirac fermions, referred to
as minimal conductivity, was intensively studied with the Land-
auer–Büttiker formalism [11–13]. An alternative approach based
on the Kubo formula has also been applied to study this phe-
nomenon in both monolayer and bilayer graphene [14,15]. It was
shown that in monolayer graphene for wide and short junction
the value of the minimal conductivity is σ π= ( )e h4/ /0

2 [11,13]. For
bilayer graphene neglecting trigonal warping the conductivity is
σ σ= 2 0, while including splitting of the Dirac cone due to trigonal
warping gives extra contributions to the conductivity, increasing it
to σ σ= 6 0 [15]. Later, for finite size of bilayer graphene it was
shown by Moghaddam and Zareyan [16] that the trigonal warping
results in an anisotropic behavior of the minimal conductivity.

Rashba spin–orbit (RSO) interaction arises once the mirror
symmetry of the bulk graphene sample is broken by the substrate
or an applied electric field perpendicular to the graphene sheet.
The strength λ of the RSO coupling is proportional to this electric
field. Photoemission experiments on graphene/Au/Ni(111) het-
erostructure revealed λ ∼ 4 meV [17]. Recently, a strong Rashba
effect with spin–orbit splitting of 70 meV has also been observed
for graphene on Fe(110) [18]. Moreover, a non-uniform spin–orbit
coupling of λ ≈ 100 meV induced by Pb monolayer in graphene
has been estimated experimentally by Calleja et al. [19].

Enhanced RSO interaction has a major impact on the transport
properties of graphene derived samples. Recently the transfer
matrix method has been employed to study spin dependent
transport properties of monolayer graphene in the presence of
inhomogeneous RSO coupling [20,21]. An important consequence
of the RSO interaction is that the low-energy behavior of electrons
in monolayer graphene with RSO coupling is related to that of
bilayer graphene with trigonal warping but without RSO interac-
tion [22,23]. Therefore, we expect that the minimal conductivity of
monolayer graphene with RSO interaction shows a similar aniso-
tropic behavior as that obtained for bilayer graphene in Ref. [16].

To see this anisotropic behavior, we calculate the minimal con-
ductivity using tight binding (TB) calculations and compare it to re-
sults obtained from a continuummodel. We study the effects of finite
sample sizes and the crystallographic orientation as well as the
length dependent oscillatory behavior of the minimal conductivity. In
our two-terminal calculations, the ballistic scattering region of
monolayer graphene with length L and width W is contacted by two
highly doped regions oriented at angle φ with respect to the zig-zag
direction of the graphene lattice (see Fig. 1). Doping in the electrodes
is achieved by shifting the Fermi energy with a large potential U0 as it
is commonly done in the literature (see, e.g., Ref. [11]).

2. Landauer–Büttiker formalism for calculating the
conductivity

In the Landauer–Büttiker approach the conductance of a sam-
ple is given by the transmission probabilities of an electron passing
through it:
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where tmn are the transmission amplitudes between the propa-
gating modes n and m of the left and right electrodes. In what
follows, we calculate the minimal conductivity in the TB model
(for finite W) and compare the results to that obtained in the
continuum model (for → ∞W ). Both in TB and continuum models
the transmission amplitudes tmn are calculated by solving the
scattering problem of the system. Then the minimal conductivity
is defined as σ = ( )L W G/ , with the conductance G calculated from

Eq. (1) at the charge neutral point of graphene, i.e., at =E 0F .

2.1. Tight binding model of graphene including RSO coupling

In the TB model the Hamiltonian HTB of monolayer graphene
with RSO coupling can be written as [22–25]
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Here H0 is the Hamiltonian of bulk graphene sheet taking into
account only nearest neighbor hopping, with hopping amplitude γ.
The operator σ

†ai ( σai ) creates (annihilates) an electron in the ith
unit cell with spin s on sublattice A, while σ

†bj ( σbj ) has the same
effect on sublattice B and h.c. stands for Hermitian conjugate. The
unit cell is given by the unit vectors a1 and a2 as shown in Fig. 2.
The Hamiltonian HR describes the Rashba spin–orbit interaction
where = ( )s s s s, ,x y z are the Pauli matrices representing the elec-
tron spin, and μ ν =, 1, 2 denote the μν matrix elements of the
Pauli matrices. Here vectors d i j, connect the nearest neighbor
atoms i j, pointing from j to i as shown in Fig. 2, and d is the

distance between them, and ^ = dd d /i j i j, , are unit vectors.
The strength of the spin–orbit coupling is denoted by λ which

may arise due to a perpendicular electric field or interaction with
a substrate.

Fig. 1. Geometry of a graphene device of length L and width W between two
electrodes doped by potential U0. Electrons incoming from the left lead are re-
flected with amplitudes r and transmitted with amplitudes t. Between the two
contacts we depict the real space structure of the monolayer graphene flake (left
side) and the energy contours in reciprocal space around the K point. The zig-zag
direction of the graphene flake makes an angle φ with the electrode interface (y
direction).

Fig. 2. Geometry of a graphene sheet. The unit vectors of the hexagonal lattice are
a1 and a2, while = ( − )d a a2 /31 2 1 , = ( − )d a a2 /32 1 2 and = ( + )d a a /33 1 2 are vectors
pointing to the neighboring atoms.
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