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H I G H L I G H T S

� The study identifies topological insulator edge coupled to nanomagnet as adiabatic quantum motor.
� Landauer–Büttiker theory for Landau–Lifshitz–Gilbert equation of nanomagnet dynamics.
� The study shows that this system realizes a Thouless motor and discusses its efficiency.
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a b s t r a c t

The precessing magnetization of a magnetic islands coupled to a quantum spin Hall edge pumps charge
along the edge. Conversely, a bias voltage applied to the edge makes the magnetization precess. We point
out that this device realizes an adiabatic quantum motor and discuss the efficiency of its operation based
on a scattering matrix approach akin to Landauer–Büttiker theory. Scattering theory provides a micro-
scopic derivation of the Landau–Lifshitz–Gilbert equation for the magnetization dynamics of the device,
including spin-transfer torque, Gilbert damping, and Langevin torque. We find that the device can be
viewed as a Thouless motor, attaining unit efficiency when the chemical potential of the edge states falls
into the magnetization-induced gap. For more general parameters, we characterize the device by means
of a figure of merit analogous to the ZT value in thermoelectrics.

& 2016 Published by Elsevier B.V.

1. Introduction

Following Ref. [1], Meng et al. [2] recently showed that a
transport current flowing along a quantum spin Hall edge causes a
precession of the magnetization of a magnetic island which locally
gaps out the edge modes (see Fig. 1 for a sketch of the device). The
magnetization dynamics is driven by the spin transfer torque ex-
erted on the magnetic island by electrons backscattering from the
gapped region. Indeed, the helical nature of the edge state implies
that the backscattering electrons reverse their spin polarization,
with the change in angular momentum transferred to the mag-
netic island. This effect is not only interesting in its own right, but
may also have applications in spintronics.

Current-driven directed motion at the nanoscale has also been
studied for mechanical degrees of freedom, as motivated by progress

on nanoelectromechanical systems. Qi and Zhang [3] proposed that a
conducting helical molecule placed in a homogeneous electrical field
could be made to rotate around its axis by a transport current and
pointed out the intimate relations with the concept of a Thouless
pump [4]. Bustos-Marun et al. [5] developed a general theory of such
adiabatic quantum motors, used it to discuss their efficiency, and
emphasized that the Thouless motor discussed by Qi and Zhang is
optimally efficient.

It is the purpose of the present paper to emphasize that the
current-driven magnetization dynamics is another – perhaps more
experimentally feasible – variant of a Thouless motor and that the
theory previously developed for adiabatic quantum motors [5] is
readily extended to this device. This theory not only provides a mi-
croscopic derivation of the Landau–Lifshitz–Gilbert equation for the
current-driven magnetization dynamics, but also allows one to dis-
cuss the efficiency of the device and to make the relation with the
magnetization-driven quantum pumping of charge more explicit.

Specifically, we will employ an extension of the Landauer–Büttiker
theory of quantum transport which includes the forces exerted by the
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electrons on a slow classical degree of freedom [6–9]. Markus Büttiker
developed Landauer's vision of quantum coherent transport as a
scattering problem into a theoretical framework [10,11] and applied
this scattering theory of quantum transport to an impressive variety of
phenomena. These applications include Aharonov–Bohm oscillations
[12], shot noise and current correlations [11,13,14], as well as edge-
state transport in the integer Hall effect [15] and topological insulators
[16]. Frequently, Büttiker's predictions based on scattering theory
provided reference points with which other theories – such as the
Keldysh Green-function formalism [17–20] or master equations [21] –
sought to make contact.

In the present context, it is essential that scattering theory also
provides a natural framework to study quantum coherent trans-
port in systems under time-dependent driving. For adiabatic
driving, Büttiker's work with Thomas and Prêtre [22] was instru-
mental in developing a description of adiabatic quantum pumping
[4] in terms of scattering theory [23–26] which provided a useful
backdrop for later experiments [27–31]. Beyond the adiabatic re-
gime, Moskalets and Büttiker combined the scattering approach
with Floquet theory to account for periodic driving [32]. These
works describe adiabatic quantum transport as a limit of the more
general problem of periodic driving and ultimately triggered nu-
merous studies on single-particle emitters and quantum capaci-
tors (as reviewed by Moskalets and Haack in this volume [33]).

The basic idea of the adiabatic quantum motor [5] is easily
introduced by analogy with the Archimedes screw, a device con-
sisting of a screw inside a pipe. By turning the screw, water can be
pumped against gravity. This is a classical analog of a quantum
pump in which electrons are pumped between reservoirs by ap-
plying periodic potentials to a central scattering region. Just as the
Archimedes pump can pump water against gravity, charge can be
quantum pumped against a voltage. In addition, the Archimedes
screw has an inverse mode of operation as a motor: water pushed
through the device will cause the screw to rotate. The adiabatic
quantum motor is a quantum analog of this mode of operation in
which a transport current pushed through a quantum coherent
conductor induces unidirectional motion of a classical degree of
freedom such as the rotations of a helical molecule.

The theory of adiabatic quantum motors [5,34] exploits the as-
sumption that the motor degrees of freedom – be they mechanical or
magnetic – are slow compared to the electronic degrees of freedom. In
this adiabatic regime, the typical time scale of the mechanical dy-
namics is large compared to the dwell time of the electrons in the
interaction region betweenmotor and electrical degrees of freedom. In
this limit, the dynamics of the two degrees of freedom can be

discussed in a mixed quantum-classical description. The motor dy-
namics is described in terms of a classical equation of motion, while a
fully quantum-coherent description is required for the fast electronic
degrees of freedom.

From the point of view of the electrons, the motor degrees of
freedom act as ac potentials which pump charge through the con-
ductor. Conversely, the backaction of the electronic degrees of freedom
enters through adiabatic reaction forces on the motor degrees of
freedom [6–9]. When there is just a single (Cartesian) classical degree
of freedom, these reaction forces are necessarily conservative, akin to
the Born–Oppenheimer force in molecular physics [35]. Motor action
driven by transport currents can occur when there is more than one
motor degree of freedom (or a single angle degree of freedom). In this
case, the adiabatic reaction force need no longer be conservative when
the electronic conductor is subject to a bias voltage [6–9].

In next order in the adiabatic approximation, the electronic
system also induces frictional and Lorentz-like forces, both of which
are linear in the slow velocity of the motor degree of freedom. In-
cluding the fluctuating Langevin force which accompanies friction
yields a classical Langevin equation for the motor degree of free-
dom. This equation can be derived systematically within the Kel-
dysh formalism [35] and the adiabatic reaction forces expressed
through the scattering matrix of the coherent conductor [6–8].

While these developments focused on mechanical degrees of
freedom, it was also pointed out that the scattering theory of adiabatic
reaction forces extends to magnetic degrees of freedom [9]. In this
case, adiabaticity requires that the precessional time scale of the
magnetic moment is larger than the electronic dwell time. The ef-
fective classical description for the magnetic moment takes the form
of a Landau–Lifshitz–Gilbert (LLG) equation. Similar to nanoelec-
tromechanical systems, the LLG equation can be derived systematically
in the adiabatic limit for a given microscopic model and the coeffi-
cients entering the LLG equation can be expressed alternatively in
terms of electronic Green functions or scattering matrices [36–39,9]. In
the following, we will apply this general theory to a magnetic island
coupled to a Kramers pair of helical edge states.

This work is organized as follows. Section 2 reviews the scat-
tering-matrix expressions for the torques entering the LLG equa-
tion. Section 3 applies this theory to helical edge states coupled to
a magnetic island and makes the relation to adiabatic quantum
motors explicit. Section 4 defines and discusses the efficiency of
this device and derives a direct relation between charge pumping
and spin transfer torque. Section 5 is devoted to conclusions.

2. S-matrix theory of spin transfer torques and Gilbert
damping

2.1. Landau–Lifshitz–Gilbert equation

Consider a coherent (Landauer–Büttiker) conductor coupled to
a magnetic moment. The latter is assumed to be sufficiently large
to justify a classical description of its dynamics but sufficiently
small so that we can treat it as a single macrospin. Then, its dy-
namics is ruled by a Landau–Lifshitz–Gilbert equation

δ̇ = × −∂ + + ( )⎡⎣ ⎤⎦UM M B B . 1M el

Note that we use units in which M is an angular momentum and
for simplicity of notation, Bel as well as δB differ from a conven-
tional magnetic field by a factor of gd, the gyromagnetic ratio of the
macrospin. The first term on the right-hand side describes the
dynamics of the macrospin in the absence of coupling to the
electrons. It is derived from the quantum Hamiltonian

Fig. 1. Schematic setup. A nanomagnet with magnetic moment M couples to a
Kramers pair of edge states of a quantum spin Hall insulator. The effective spin
current produces a spin-transfer toque and the magnetic moment precesses.
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