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H I G H L I G H T S

� Finite-frequency current correlations are studied for a superconducting wire.
� Majorana bound states are allowed at the ends of the wire.
� The wire is attached to two terminals at one of its ends.
� In the topological phase we find vanishing cross-correlations for large frequency.
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a b s t r a c t

In this paper we study the finite-frequency current cross-correlations for a topological superconducting
nanowire attached to two terminals at one of its ends. Using an analytic 1D model we show that the
presence of a Majorana bound state yields vanishing cross-correlations for frequencies larger than twice
the applied transport voltage, in contrast to what is found for a zero-energy ordinary Andreev bound
state. Zero cross-correlations at high frequency have been confirmed using a more realistic tight-binding
model for finite-width topological superconducting nanowires. Finite-temperature effects have also been
investigated.

& 2016 Published by Elsevier B.V.

1. Introduction

One of the prototypical systems which host Majorana Bound
States (MBS) is the Kitaev chain [1], a discrete model for a one-
dimensional p-wave superconductor. Such a model can be realised
in a semiconducting nanowire with strong spin-orbit coupling by
placing it in close proximity to a s-wave superconductor, thus in-
ducing superconductivity in the wire, and applying a strong
magnetic field which leads to a large Zeeman splitting [2,3]. With
possible solid-state realisations available, several experimental
studies have gathered evidence compatible with the existence of
MBSs [4–8]. As a result, the quest for an unambiguous signature of
the presence of a MBS has become a priority and is stimulating a
significant research effort [9–13]. Up to now only a few papers

have focused on the consequences of MBSs on the behaviour of
current correlations [14–24]. Very recently Haim et al. (Ref. [25])
have considered the spin-resolved current cross-correlations,
finding that they are negative for a MBS in the case of correlations
between opposite spins.

In this paper, we consider a semi-infinite topological super-
conducting wire attached to two normal terminals at one end, as
shown in Fig. 1. A bias voltage V is applied to the two normal contacts
(labelled 1 and 2), while the superconducting wire is grounded. We
calculate the cross-correlations at finite frequency between the cur-
rents I1 and I2 flowing in the two normal leads. Our main finding is
that the cross-correlations at frequencies larger than twice the vol-
tage V vanish at zero temperature, when the superconducting wire is
in the topological phase. On the contrary, in the presence of an or-
dinary zero-energy Andreev Bound State (ABS), which similarly to a
MBS gives rise to a zero-bias peak in the differential conductance, the
cross-correlations at high frequency are in general non-zero and
depend on the details of the system. The origin of this phenomenon
can be attributed to the peculiar structure of the energy-dependent
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scattering matrix for reflections off a MBS. In addition, at zero-fre-
quency the cross-correlations are always negative in the presence of
a MBS, analogously to the case of spin-resolved spin-up/spin-down
cross-correlations [25], but may be positive in the case of an ABS.
These results have been obtained with a simple analytical model
whereby two normal leads are coupled either to a Majorana state or
a zero-energy level. Zero cross-correlations at high frequency are
then confirmed using a more realistic tight-binding model based on
the semiconducting-nanowire realisation of a one-dimensional p-
wave superconducting wire.

2. Formalism and methods

In this section we briefly review the scattering approach for the
finite-frequency current-current correlations in hybrid super-
conducting systems [26]. The (non-symmetrized) current-current
correlator between lead i and ′i is defined as

( ) = 〈 ( ) ( )〉 − 〈 〉〈 〉 ( )′ ′ ′S t I t I I I0 , 1ii i i i i

where ( )I ti is the current1 operator at time t relative to terminal i
and 〈⋯〉 stands for the quantum-statistical average. Taking the
Fourier transform of ( )′S tii one obtains the finite-frequency corre-
lator as

∫ω( ) = ( ) ( )
ω′ ′S S t e dt. 2ii ii
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Within the Landauer-Büttiker scattering approach [28,30], the fi-
nite-frequency current-current correlator in a hybrid super-
conducting system, calculated in the normal leads, is given by [26]
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where the indices α α β β′ ′ ∈ { ± }, , , 1 indicate electrons (þ1) and
holes (�1) in Nambu space, σ σ τ τ′ ′, , , refer to the spin-projection
quantum number and ′ ′i i j j, , , label the leads. The Fermi

distribution function in the normal lead i for a α-like particle at
temperature T and voltage Vi is given by
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Moreover, in Eq. (3) we have defined
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where ( )βα
τ σs Ei j is the scattering amplitude at energy E for a α-like

particle with spin s injected from lead j to be reflected as a β-like
particle with spin τ in lead i. In the rest of this paper, we shall focus
on the symmetrized noise, defined as ω ω ω( ) = ( ) + ( − )′ ′ ′S S Sii

S
ii ii ,

since this is the quantity that is measured by a classical detector
[31]. We shall furthermore assume that the two normal terminals
are kept at the same voltage ( = =V V V1 2 ).

3. Analytic 1D model

The system depicted in Fig. 1 can be modelled in a simple way by
composing [30] the scattering matrix sM of a normal lead coupled to
a Majorana state with the scattering matrix sbs of a 3-leg beam
splitter, which describes the connection to terminals 1 and 2. The
matrix sM can be calculated from the Hamiltonian describing a
normal lead coupled to a Majorana state (see Ref. [25])
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where the first term describes the lead, ψ σ
†gerk being the creation

operator of a spin-s particle with momentum k and energy ϵk, and
the second term the coupling to the localised Majorana fermion γ.
Without loss of generality, we assume the coupling parameters ↑t
and ↓t to be real. Using Eq. (6) the scattering matrix in Nambu space
takes the following form
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Here αβrM are matrices, in spin space, of reflection amplitudes given
by
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where Γ πν= | |↑ ↑t2 0
2, Γ πν= | |↓ ↓t2 0

2, Γ Γ Γ= +↑ ↓ with ν0 being the
density of states of the normal leads, while reh

M and rhh
M are de-

termined by particle-hole symmetry ( ) = [ ( − )]α β α β− −
⋆r E r E,

M
,

M .
Assuming no spin mixing to occur in the beam-splitter, the

block of the scattering matrix sbs for spin-s electrons is a 3�3
unitary matrix which can be parameterized as follows [32]
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Here λ σ( )1 2 is the scattering amplitude for an electron with spin s
injected from lead ( )1 2 to be transmitted in 3 (with λ λ+ ≤σ σ 11

2
2
2 ),

λ λ= − − −σ σ σc s 11 1
2

2
2 (with = ±s 11 ) is the scattering amplitude

for an electron to be reflected back in lead 3,
λ λ λ λ= − ( + )( + )σ σ σ σ σ σ

−b s c1 2 2 1
2

2
2 1 (with = ±s 12 ) is the amplitude for

Fig. 1. Schematic setup of the system. A superconducting (S) nanowire, which can
be driven in and out of the topological phase by an applied magnetic field, is
contacted by means of a beam splitter to two normal (N) leads, labelled 1 and 2.

1 In this paper we consider only quasiparticles current and neglect the role of
displacement currents; the latter might induce corrections to the noise at high
frequency in the case of strongly energy-dependent density of state [27–29]. This
must be taken into account in the analysis of actual experimental data. Such cor-
rections, however, depend on the details of the system and their discussion is
beyond the scope of the present paper.
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