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HIGHLIGHTS

 Finite-frequency current correlations are studied for a superconducting wire.

e Majorana bound states are allowed at the ends of the wire.
e The wire is attached to two terminals at one of its ends.

¢ In the topological phase we find vanishing cross-correlations for large frequency.
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investigated.

In this paper we study the finite-frequency current cross-correlations for a topological superconducting
nanowire attached to two terminals at one of its ends. Using an analytic 1D model we show that the
presence of a Majorana bound state yields vanishing cross-correlations for frequencies larger than twice
the applied transport voltage, in contrast to what is found for a zero-energy ordinary Andreev bound
state. Zero cross-correlations at high frequency have been confirmed using a more realistic tight-binding
model for finite-width topological superconducting nanowires. Finite-temperature effects have also been

© 2016 Published by Elsevier B.V.

1. Introduction

One of the prototypical systems which host Majorana Bound
States (MBS) is the Kitaev chain [1], a discrete model for a one-
dimensional p-wave superconductor. Such a model can be realised
in a semiconducting nanowire with strong spin-orbit coupling by
placing it in close proximity to a s-wave superconductor, thus in-
ducing superconductivity in the wire, and applying a strong
magnetic field which leads to a large Zeeman splitting [2,3]. With
possible solid-state realisations available, several experimental
studies have gathered evidence compatible with the existence of
MBSs [4-8]. As a result, the quest for an unambiguous signature of
the presence of a MBS has become a priority and is stimulating a
significant research effort [9-13]. Up to now only a few papers
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have focused on the consequences of MBSs on the behaviour of
current correlations [14-24]. Very recently Haim et al. (Ref. [25])
have considered the spin-resolved current cross-correlations,
finding that they are negative for a MBS in the case of correlations
between opposite spins.

In this paper, we consider a semi-infinite topological super-
conducting wire attached to two normal terminals at one end, as
shown in Fig. 1. A bias voltage V is applied to the two normal contacts
(labelled 1 and 2), while the superconducting wire is grounded. We
calculate the cross-correlations at finite frequency between the cur-
rents I; and I, flowing in the two normal leads. Our main finding is
that the cross-correlations at frequencies larger than twice the vol-
tage V vanish at zero temperature, when the superconducting wire is
in the topological phase. On the contrary, in the presence of an or-
dinary zero-energy Andreev Bound State (ABS), which similarly to a
MBS gives rise to a zero-bias peak in the differential conductance, the
cross-correlations at high frequency are in general non-zero and
depend on the details of the system. The origin of this phenomenon
can be attributed to the peculiar structure of the energy-dependent
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Fig. 1. Schematic setup of the system. A superconducting (S) nanowire, which can
be driven in and out of the topological phase by an applied magnetic field, is
contacted by means of a beam splitter to two normal (N) leads, labelled 1 and 2.

scattering matrix for reflections off a MBS. In addition, at zero-fre-
quency the cross-correlations are always negative in the presence of
a MBS, analogously to the case of spin-resolved spin-up/spin-down
cross-correlations [25], but may be positive in the case of an ABS.
These results have been obtained with a simple analytical model
whereby two normal leads are coupled either to a Majorana state or
a zero-energy level. Zero cross-correlations at high frequency are
then confirmed using a more realistic tight-binding model based on
the semiconducting-nanowire realisation of a one-dimensional p-
wave superconducting wire.

2. Formalism and methods

In this section we briefly review the scattering approach for the
finite-frequency current-current correlations in hybrid super-
conducting systems [26]. The (non-symmetrized) current-current
correlator between lead i and i’ is defined as

Sii(t) = {L®I(0)) — Iy, M

where [t) is the current! operator at time t relative to terminal i
and (---) stands for the quantum-statistical average. Taking the
Fourier transform of S;(t) one obtains the finite-frequency corre-
lator as

Sir@) = [[Si(o) e d. 2

Within the Landauer-Biittiker scattering approach [28,30], the fi-
nite-frequency current-current correlator in a hybrid super-
conducting system, calculated in the normal leads, is given by [26]
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where the indices «, o/, 8, #’ € { + 1} indicate electrons (+1) and
holes (—1) in Nambu space, o, ¢, 7, 7' refer to the spin-projection
quantum number and i, 1i,j,j label the leads. The Fermi

! In this paper we consider only quasiparticles current and neglect the role of
displacement currents; the latter might induce corrections to the noise at high
frequency in the case of strongly energy-dependent density of state [27-29]. This
must be taken into account in the analysis of actual experimental data. Such cor-
rections, however, depend on the details of the system and their discussion is
beyond the scope of the present paper.

distribution function in the normal lead i for a a-like particle at
temperature T and voltage V; is given by
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Moreover, in Eq. (3) we have defined
AZe (B E E\ 7, 1) = Supdocdjidupdredji — [SPOEN* S0 (E), )

where s},f{“(E) is the scattering amplitude at energy E for a a-like
particle with spin ¢ injected from lead j to be reflected as a f-like
particle with spin 7 in lead i. In the rest of this paper, we shall focus
on the symmetrized noise, defined as S3 (o) = Sii(@) + Sii( — w),
since this is the quantity that is measured by a classical detector
[31]. We shall furthermore assume that the two normal terminals
are kept at the same voltage (Vi =V, = V).

3. Analytic 1D model

The system depicted in Fig. 1 can be modelled in a simple way by
composing [30] the scattering matrix sM of a normal lead coupled to
a Majorana state with the scattering matrix s of a 3-leg beam
splitter, which describes the connection to terminals 1 and 2. The
matrix sM can be calculated from the Hamiltonian describing a
normal lead coupled to a Majorana state (see Ref. [25])

H= Y e w, +ir Y G, + ty'ges,),

ko ko (6)
where the first term describes the lead, y'ger; being the creation
operator of a spin-¢ particle with momentum k and energy €, and
the second term the coupling to the localised Majorana fermion y.
Without loss of generality, we assume the coupling parameters t;
and t; to be real. Using Eq. (6) the scattering matrix in Nambu space
takes the following form
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Here r},‘j‘, are matrices, in spin space, of reflection amplitudes given
by
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where I} = 2mlt)?, I = 2mylt)?, I'=1I; + I} with v, being the
density of states of the normal leads, while M and r} are de-
termined by particle-hole symmetry rME) = [r™, _,( - E)]*.
Assuming no spin mixing to occur in the beam-splitter, the
block of the scattering matrix sbs for spin-¢ electrons is a 3 x 3
unitary matrix which can be parameterized as follows [32]

C Mo Ao
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Here 4 ), is the scattering amplitude for an electron with spin ¢
injected from lead 1(2) to be transmitted in 3 (with 2 + A3, < 1),
C,=—siy1 -3 — a2 (with s;=x 1) is the scattering amplitude
for an electron to be reflected back in lead 3,
b, = = Mohau(S2 + €L + 43,)~1 (with s, = + 1) is the amplitude for
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