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a b s t r a c t

We present a perturbative approach to the conductance change caused by a weakly invasive scattering
potential in a two-dimensional electron gas. The resulting expressions are used to investigate the re-
lationship between the conductance change measured in scanning gate microscopy as a function of the
position of a scattering tip and local electronic quantities like the current density. We use a semiclassical
approach to treat the case of a strong hard-wall scatterer in a half-plane facing a reflectionless channel.
The resulting conductance change is consistent with the numerically calculated quantum conductance.

& 2016 Published by Elsevier B.V.

1. Introduction

The scanning gate microscopy (SGM) is an experimental tech-
nique detecting the change in the conductance of a nanostructure
while the charged tip of an atomic force microscope is scanned
over the surface of the device [1–9]. The interpretation of what are
the physical properties actually probed with the SGM technique is
still a point of debate (for a review see Ref. [10]).

Our first contribution to this intriguing physical problem [11]
was quickly greeted by a short note from Markus Büttiker saying
“Dear Rodolfo, dear Dietmar : You clearly wrote a paper that needed to
be written! Since the conductance is proportional to the transmission
probability, the change of conductance is the change of the transmis-
sion probability due to the variation in the potential. Many years ago,
in a paper which I have enclosed, we looked at this quantity.” And he
went on in his scholar style discussing what should be done in
order to get his approach [12] to agree with ours in their common
regime of applicability (which we could soon establish). Kind notes
as this one, that many colleagues frequently received from our
tireless role-model, shaped the evolution of Mesocopic Physics
since the eighties and gave rise to important developments.

In this article we first review the progressive understanding
achieved through our contributions to SGM in the limit of a weakly
perturbing tip. The linear-response regime of small bias voltages
[11,13] as well as the weakly non-linear case [14] is presented. In an

attempt to connect with other theoretical and experimental work,
we go beyond the perturbative regime and study SGM setups by
means of semi-classical approximations and numerical calculations.
Since SGM is a cornerstone of Mesoscopic Physics, it is noticeable
how many of the concepts encountered are connected with the
seminal contributions of Markus Büttiker to the field.

2. The scattering approach

Conductance is transmission in the scattering approach to
quantum transport that was put forward by Landauer and Büttiker.
The two-probe dimensionless conductance g (in units of e h2 /2 ) is
given in linear response to the applied bias voltage by [15]
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where t is the matrix of transmission amplitudes between the left
and right leads (evaluated at the Fermi energy εF of the reservoirs).
The trace is taken over the N incoming, right-moving modes. In
the basis of the scattering eigenmodes (eigenvectors of the matrix

†t t) the trace takes the simple form of a sum over the squares of
the transmission eigenvalues m. The transmission matrix con-
stitutes one of the blocks of the scattering matrix
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The other blocks r, ′r , and ′t characterize the complementary
reflection and transmission amplitudes (primes are used to indicate
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scattering amplitudes with incident modes impinging from the
right lead). Current conservation dictates the unitarity of the scat-
tering matrix ( =†SS I). In the absence of magnetic fields, time-re-
versal symmetry implies that S is a symmetric matrix ( =S ST ).

The transmission and reflection amplitudes determine the
asymptotic behavior of the scattering wave-functions. For instance,
the incoming mode from the left lead (l¼1) in the ath channel,
φ ϕ( ) = ( ) [ ] ( )ε

(−) −c k ik x yr / expa a a a1, , defines the outgoing scattering state
Ψ ( )ε ra1, , given, respectively, in the left and right leads by
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We note π= ( )c M /2e
2 1/2, Me the effective electron mass, ka the

longitudinal wave-vector, and =v k M/a a e the longitudinal velocity.
The index of the wave-vector stands for an infinitesimal imaginary
part needed to ensure the proper time-ordering in the incoming
( − ) and ( + ) outgoing modes. ϕ ( )ya represents the transverse
wave-function of the ath channel.

The transmission and reflection amplitudes between modes a
and b can be obtained, respectively, from the retarded Green
function ε( ¯ )r r, , associated to the Hamiltonian that defines the
structure [16]
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The integrations take place at the transverse cross-sections x̄

on the left lead and x on the right (left) lead for the transmission
(reflection) amplitudes.

The expressions (4), (5) have a clear physical interpretation
highlighting the quantum propagation through the structure, and
are extremely useful for numerical and analytical calculations.
Among the latter, approximations to the Green function by per-
turbation theory or semi-classical expansions are particularly
useful, and have be thoroughly used in the present context.

3. Perturbation by the tip potential

The scattering approach sketched in the previous section is
applicable to any phase-coherent two-lead setup. We are inter-
ested in testing the response of a given nanostructure to a capa-
citively coupled scanning gate microscope. Therefore, we take the
total Hamiltonian as

= + ( )H H V , 6T T

where H represents the unperturbed structure to be characterized
and VT, intended to act as a probe, is the electrostatic energy of an
electron in the potential generated by the perturbing tip. While
most of the analysis is developed for an arbitrary H, the case of a
quantum point contact (QPC) is treated in detail. Similarly, general
results for a non-specified VT are established, and then the case of
local spatial perturbations will be the focus.

In Refs. [11,13] VT was included within a Lippmann–Schwinger
scheme, working up to second order in perturbation theory of the
scattering wave-functions, and an equivalent alternative path

based on the perturbative expansion of the Green function was
outlined. In the sequel we develop this second approach, high-
lighting the use of Green functions beyond perturbation theory.

The Green function T of the perturbed system is related with
that of the unperturbed case through Dyson's equation

∫ε ε ε ε( ¯ ) = ( ¯ ) + ¯̄ ( ¯̄ ) ( ¯̄) ( ¯̄ ¯ ) ( )Vr r r r r r r r r r, , , , d , , , , 7T T T

The second-order correction of the reflection amplitude
δ δ δ= +( ) ( )r r r1 2 determines, through the Landauer–Büttiker Eq. (1)
for the perturbed problem, the change of the conductance due to
the presence of the tip
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where the traces are taken over the right-moving modes and the
energy arguments are set at εF.

3.1. First-order perturbation in the tip potential

Using the first-order approximation of Eq. (7) and relationship
(5) between the Green function and the reflection amplitude, one
gets the first-order Born approximation
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From the spectral decomposition of in the basis of scattering
states Ψ εl a, , resulting from an incoming wave in the left (right) lead

= ( )l 1 2 , in channel a and at energy ε, and integrating over the
transverse coordinates y and ȳ we have
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We have defined ¯
¯
aa
l l as the ( ¯ )a a, matrix element of the ×N N

matrix ε ε( ¯ )¯ ,l l of the perturbation in the basis of the scattering
wave-functions; that is,

∫ε ε Ψ Ψ( ¯ ) = ( ) ( ) ( ) ( )ε ε¯
¯
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The bar and double-bar in the wave-vectors and scattering
amplitudes indicate their energy argument. The integrations over
ε̄̄ and ε̄ can be easily performed by contour-integration for the case

¯ <x x, 0 (see Appendix A of Ref. [13]), yielding
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