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a b s t r a c t

The scattering theory of electron transport allows for a compact and powerful description in terms of
ˇ =g 12 Green functions, the so-called circuit theory of quantum transport. A scatterer in the theory is
characterized by an action, most generally a Keldysh one, that can be further used as a building bock of
theories describing statistics of electron transport, superconducting correlations, time-dependent and
interaction effects. The action is usually used in the form suitable for a two-terminal scatterer.

Here we provide a comprehensive derivation of a more general form of the action that is especially
suitable and convenient for general multi-terminal scatterers. The action is expressed as a determinant of
a block of the scattering matrix obtained by projection on the positive eigenvalues of the Green functions
characterizing the reservoirs. We start with traditional Green function formalism introducing ˇ =g 12

matrices and give a first example of multi-terminal counting statistics. Further we consider one-di-
mensional channels and discuss chiral anomaly arising in this context. Generalizing on many channels
and superconducting situation, we arrive at the block-determinant relation. We give the necessary ela-
borative examples reproducing basic results of counting statistics and super-currents in multi-terminal
junctions.

& 2016 Published by Elsevier B.V.

1. Introduction

The well-established and refined culture of theoretical de-
scription of electron transport in bulk solids and heterostructures
was based on field-theoretical methods [1] and Keldysh Green
functions [2]. The pioneering works of Landauer and Buttiker [3,4]
that unambiguously related electron transport and coherent
scattering in micro-contacts have been regarded with suspicion:
the genuine simplicity of their approach looked as a barbaric in-
trusion to a sophisticated domain. It took time to appreciate the
idea that the electron resistance is in fact scattering. Once the
appreciation of this revolutionary idea was in place, a fast research
progress has revealed many facets of the universality of scattering
approach and its relevance in the areas where its applicability was
not at all obvious. The electric noise was understood in terms of
scattering [5,6]. The sophistication came back when a state-of-the-
art quantum calculation [7] has demonstrated that the whole
statistics of electron transport is defined by the scattering matrix.
The approach has been applied to superconducting contacts [8].

This also initiated research that combined Green function ap-
proaches with the notions of scattering and discrete elements

giving rise to a bunch of the so-called quantum circuit theories [9]
that are indispensable for accessing full counting statistics, trans-
mission distribution in complex scatterers, superconducting and
spin transport in nanostructures. A starting point of this research
was actually the paper of Buttiker and Beenakker about the noise
in diffusive connector [10] that seemed wrong to the author and
thus motivated him to prove the statement on more solid grounds.
Quantum circuit theories possess a remarkable degree of uni-
versality. A two-terminal scatterer in this approach is always de-
scribed by an action
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where n labels transport channels of the scatterer, Tn are corre-
sponding transmission coefficients, while the matrices Ǧ1,2 char-
acterize the states of the leads, stem from the Green functions and

satisfy ˇ =G 11,2
2

. The matrix structure as well as the role of the
action conforms a concrete situation from the great variety where
the relation can be applied. In case of circuit theory of transmis-
sion distribution [11] Ǧ is a single-parametric 2�2 matrix and is
function to be minimized while in a theory encompassing inter-
play of Coulomb interaction and disorder [12] Ǧ may represent
supersymmetric s-model quantum fields, matrix structure
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includes time indices and the action is a part of a path integral
weight.

In this paper, we address the generalization of Eq. (1) to the
case of multiple terminals. Such generalization has hardly been
discussed in the literature. One of the reasons for this is the fact
that in a (quantum) circuit theory a multi-terminal scatterer can
be readily modelled with two-terminal ones and at least a single
node connected to the leads by means of these two-terminal
scatterers. For instance, this is a way to multi-terminal counting
statistics [13]. However, such approach is not general. On mean-
field level, it disregards random phase factors accumulated in the
course of the scattering in the node. The statistics of these random
phase factors can in principle be obtained if proceeding beyond
the mean-field level. However, this does not give an action for a
concrete realization of these phase factors. Such action is espe-
cially important in the context of recent discovery of non-trivial
topological phenomena in multi-terminal superconducting junc-
tions [14].

A proposal for such generalization has been made in [15] in the
context of understanding Fermi Edge singularity. In this paper, we
provide a full and comprehensive derivation of this relation
starting from the common textbook Green functions and extend it
to the case of superconducting terminals. The result is expressed
as a determinant of a block of the scattering matrix obtained by
projection on the positive eigenvalues of the Green functions
characterizing the reservoirs and is given by Eqs. (46) and (67).

The structure of the article is as follows. In Section 2 we discuss
the Keldysh Green functions, its extension to counting statistics
and give a single-state multiterminal example. In Section 3 we
consider a transport channel connecting two reservoirs without
scattering, compute Green functions and the action, recognize and
heal a dangerous chiral anomaly. The generalization to many
channels and scattering comes in Section 4. We introduce the
superconducting reservoirs in Section 5 and generalize the action
to this case in Section 6. Further we elaborate on two basic ex-
amples for the block-determinant formula obtained. In Section 7
we derive the full counting statistics for multi-terminal transport
of the normal electrons. In Section 8 we perform the projection in
superconducting case, consider the ground state energy of the
junction and derive a useful formula for non-stationary super-
conducting current. We conclude in Section 9.

2. Green functions: general

We start our considerations with conventional definition [2] of
Keldysh Green functions in terms of averages of fermion creation–
annihilation operators Ψ ( )t X, , with X being an element of a Hilbert
space (for instance, space coordinate):

Ψ Ψ Θ
Θ

Ψ Ψ Θ
Θ

Θ Θ

ˇ( ) = = 〈 〉

− 〈 〉 ≡ ( ± ( − ))
( )

++ +−

−+ −−
† −

+

† +

−
±

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

iG X X i G G
G G

t t

,
1

0

0
1

;
2

1 2 1 2

2 1 1 2

Here Ψ Ψ≡ ( )X1,2 1,2 and “check” denotes the matrix structure in the
Keldysh index = ±i . Let us specify to a general stationary none-
quilibrium state where the density matrix is diagonal in the space
of energy levels k and filling factor of this level is fk. Since
Ψ Ψ( ) = ( − ϵ ) ( )t i texp 0k , the Green function is diagonal in the levels
and reads
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To get it in the energy representation, ∫ˇ(ϵ) ≡ ˇ( )ϵG dte G t, 0i t , we note

that
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where we have introduced the advanced and retarded Green
functions not depending on the filling factors. With those, we can
represent the Green function as
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For proper description of the reservoirs we need what in old
literature is called “Green function in coinciding points”, ˇ ( )G X X, . In
fact, this concept has little to do with geometric proximity of the
points: rather, it represents a Green function “averaged” over a big
number of similar states of a quasicontinuous spectrum of the
same energy. Let us generally define it as ˇ = ∑ ˇG w Gk k kav , with wp

being some positive weights. The result of such averaging reads
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where ν δ≡ ∑ (ϵ − ϵ)wk k k . For Green function in coinciding points, ν
is the density of states. Its dependence on ϵ can be disregarded in
all important cases. If the filling factors of the levels before the
averaging depend on energy only, the filling factor (ϵ)f in the
above relation naturally reproduces f of the levels. If not, (ϵ)f is a
weighted average of those and effective filling factor of this group
of the states if they are used as a reservoir.

The common Keldysh technique can be defined through the
unitary evolution of the density matrix:

ρ ρ( ) = ( − ) ( − ∞) ˜ ( )t T iHt T iHtexp exp .

The extended Keldysh technique [9] is defined through a non-
unitary evolution of the pseudo-density matrix with the Ha-
miltonians ±H depending on the Keldysh index

ρ ρ( ) = ( − ) ( − ∞) ˜ ( ) ( )− +t T iH t T iH texp exp 9

We define the action in terms of the trace of this pseudo-density
matrix after its evolution over a big interval of time , ρ= ( )e Tr .
Common application of extended Keldysh technique is full
counting statistics of electron transfers [16]. In this case,

χ= ±±H H I/2 , with I being the operator of current to a certain
reservoir and the Fourier transform of e with respect to χ gives
the probabilities of transferring N electrons during the time in-
terval :
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We will be interested in variations of the action. Let us assume
that the Hamiltonians have been changed by a little addition

Ψ Ψ→ + ∑ ( )±
± †H H h tpm ab ab a b. The corresponding variation of the ac-

tion in the limit of small h is expressed in terms of the Green
functions
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