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HIGHLIGHTS

e We consider a quantum point contact as a heat engine in nonequilibrium steady state.

e We determine the efficiency of the point contact at maximum power.

e Due to fluctuations, the efficiency may beat the Carnot limit on short time scales.
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The efficiency of macroscopic heat engines is restricted by the second law of thermodynamics. They can
reach at most the efficiency of a Carnot engine. In contrast, heat currents in mesoscopic heat engines
show fluctuations. Thus, there is a small probability that a mesoscopic heat engine exceeds Carnot's
maximum value during a short measurement time. We illustrate this effect using a quantum point
contact as a heat engine. When a temperature difference is applied to a quantum point contact, the
system may be utilized as a source of electrical power under steady state conditions. We first discuss the
optimal working point of such a heat engine that maximizes the generated electrical power and sub-
sequently calculate the statistics for deviations of the efficiency from its most likely value. We find that
deviations surpassing the Carnot limit are possible, but unlikely.

© 2016 Published by Elsevier B.V.

Biittiker was among the first scientists to realize that mea-
surements of current fluctuations deliver most valuable informa-
tion about the internal structure of mesoscopic conductors [1]. The
measurement of shot noise [2] in a tunnel junction, for instance,
may be used to determine the elementary charge of the charge
carriers transferred through the circuit. Its measurement may as
well serve to reveal the transmission probabilities of a multi-
channel mesoscopic point contact.

The description of current fluctuations was later extended to
full statistics of the charge transfer through a mesoscopic con-
ductor [3]. From an experimental point of view, current fluctua-
tions are probably the easiest to measure. Nevertheless, statistics
for a number of other mesoscopic physical quantities have also
been investigated: among them, combined charge-phase statistics
in the superconducting state [4], waiting time statistics of a closed
volume [5], voltage statistics on a current biased point contact [6].

Recently, interest has shifted to energy transport through me-
soscopic structures. The study of energy transport is partially
motivated by the possibility to use small circuits to convert local
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temperature differences into voltages [7]. Heat currents are subject
to fluctuations as well [8]. Such fluctuations have been theoreti-
cally studied in a number of situations [9-13]. Although the direct
measurement of fluctuations in heat current is probably difficult,
indirect consequences of energy fluctuations have been observed
experimentally [14-16].

In this paper, we apply the theory of heat current fluctuations
to a question of rather conceptual than practical interest. We
consider a mesoscopic heat engine that converts heat partially into
electrical work. Since heat currents in mesoscopic devices fluc-
tuate with time, any quantity derived from the heat currents will
fluctuate as well. In particular, the efficiency of heat to work
conversion will depend randomly on time and therefore may ex-
ceed the Carnot efficiency for a short time, not on average, but
sometimes with a non-vanishing probability. It is the aim of this
work to quantify this probability. We illustrate our discussion with
a quantum point contact, a narrow constriction between two
electrodes that shows quantized linear conductance.

1. System and formalism

Our system of interest is a mesoscopic point contact coupling
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Fig. 1. Inset: A quantum point contact connected to two reservoirs at different
temperatures T;, Tz and chemical potentials y;, ug may be used as a heat engine that
converts heat E; partially into electrical work W. Main plot: Efficiency n = W/E,
versus the applied temperature ratio Tg/T; at the optimal working point, compared
to the ideal efficiency of a Carnot process and the Curzon-Ahlborn efficiency at
maximum power.

left (L) and right (R) reservoirs that have in general different
chemical potentials y;, pg and different temperatures T;, Tg. This is
an experimentally relevant situation that has been the subject of
recent works [17-19]. Quite generally, energy will flow from the
left to the right reservoir when T; > Tz. The energy flow is ac-
companied by a charge flow against a difference in the chemical
potentials, y; < ug. This charge flow corresponds to the electrical
work generated by the point contact. The inset of Fig. 1 shows the
setup and the sign conventions. The heat extracted from the left
reservoir E; has a positive sign, the (smaller) heat evacuated into
the right reservoir Eg has a negative sign. We take the generated
work W as a positive quantity:

E, + Eg=W> 0. (])
The efficiency of the heat engine is then defined as

_ w _ E; + Eg

= E E )
We consider that both electrodes have well defined chemical
potentials and temperatures. Hence, relaxation processes in the
reservoirs are assumed to be fast compared to the time 7 that our
measurement takes. At the end of the experiment we record the
amount of heat E; that is extracted from the hot reservoir and the
amount of heat Eg that is dumped into the cold reservoir. Due to
thermal and quantum fluctuations, the whole transfer process is
probabilistic and described by a probability distribution P.(E;, Eg).
Often it is more useful to use the corresponding cumulant gen-
erating function S,(i&, i&) instead of P. Both quantities are linked
by Fourier transformation:

P(E, Eg) ~ / dép dége—iELEL+ERER+SELIER), 3)
The generating function describing the statistics of heat transfer in

a general two-terminal conductor is given in Ref. [8]. Here, we
adapt this generating function for our purpose:

S.(i1, iEr)
=z fdeln{l +If,(1 _fR)(eiél_(s—m—iék(f—um -1
b4
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This expression applies to a spin-degenerate single-channel point
contact with transparency 7. It also contains the leads’ Fermi oc-
cupation factors f p =1/[1 + e-m.RITLR), For convenience, we
hereafter choose units such that the Planck constant, the unit
charge and the Boltzmann constant are equal to one. Any cumu-
lant of the distribution P.(E;, Eg) can be obtained from the gen-
erating function by taking partial derivatives:
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Thermoelectric effects necessarily require that the transmission
probability I of the quantum point contact depends on energy €. A
basic and convenient model for this dependence was proposed by
Biittiker [20]. If the potential barrier creating the point contact is a
saddle, the transmission probability of one single transmission
channel reads

1

Fe)= 1 + emcooz’ (6)

where &g is the potential at the saddle and w, gives the energy
width of the transition region. In this work we will use a simplified
version. We assume a very long point contact, w, - o, and choose
the energy scale such that ey = 0. The transmission probability
then jumps sharply from zero to one

0, e<0

reo=4".so %)

when energy surpasses the threshold set by &.

2. Optimal working point

For a given set of temperatures T; and Tz we may optimize the
chemical potentials y; and pg such that production of work is
maximized on average. We call this optimized situation the
working point of the point contact. The result is equivalent to that
of the efficiency at maximum power which has been analyzed in
detail in Ref. [21] in the context of scattering theory of quantum
transport. From Eq. (1) we have

AW _

((W)) = ((Er)) + ((EL)), P
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with the heat extracted from the heat reservoir given by

(ED) ~ 7 [ de, = fote = ), ©
and the generated work obeying the Joule expression

(W) ~ g = ) [ det, =y, o)

for the nonzero voltage difference p; — y;. Combining the deriva-
tives with respect to both chemical potentials we find
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Since T, > Tz and g < pg (charge current must flow against the
potential from the hot to the cold reservoir), it follows im-
mediately that both chemical potentials have to be negative (we
set the Fermi energy Er=0). Substituting Eq. (11) into ((W)) and
calculating the energy integral yield the intermediate result
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