
Reprint of : Semiclassical theory of persistent current fluctuations
in ballistic chaotic rings

Piet W. Brouwer a,n, Jeroen Danon b

a Dahlem Center for Complex Quantum Systems and Physics Department, Freie Universität Berlin, Arnimallee 14, 14195 Berlin, Germany
b Niels Bohr International Academy, and the Center for Quantum Devices, Niels Bohr Institute, University of Copenhagen, 2100 Copenhagen, Denmark

a r t i c l e i n f o

Article history:
Received 1 July 2015
Accepted 3 August 2015
Available online 7 April 2016

Keywords:
Quantum transport
Quantum chaos
Mesoscopic physics

a b s t r a c t

The persistent current in a mesoscopic ring has a Gaussian distribution with small non-Gaussian cor-
rections. Here we report a semiclassical calculation of the leading non-Gaussian correction, which is
described by the three-point correlation function. The semiclassical approach is applicable to systems in
which the electron dynamics is ballistic and chaotic, and includes the dependence on the Ehrenfest time.
At small but finite Ehrenfest times, the non-Gaussian fluctuations are enhanced with respect to the limit
of zero Ehrenfest time.

& 2016 Published by Elsevier B.V.

1. Introduction

The fact that application of a magnetic field induces an equili-
brium charge current is at the basis of the Landau diamagnetic
magnetic response of metals [1]. For conducting rings threaded by a
magnetic flux, this orbital magnetic response takes the form of a
current around the ring, whereas the sign of the response may be
diamagnetic as well as paramagnetic [2]. The recognition by Büttiker,
Imry, and Landauer that this so-called “persistent current” continues
to exist in the presence of elastic impurity scattering [3] and, hence,
should be observable in realistic metal samples, initiated a surge in
theoretical and experimental work on this paradigmatic mesoscopic
phenomenon in the mid-1980s and 1990s [4]. Two recent experi-
ments have revived the interest in persistent currents [5–7]. The
magnitude of the measured mean square current is in excellent
agreement with the original theoretical predictions for disordered
metal rings [8,9]. Earlier experiments had confirmed the existence of
the persistent currents [10,11], but a quantitative verification of the
theoretical estimates was not possible.

Whereas disorder is unavoidable in metal rings, persistent
currents were also investigated in semiconductor hetero-
structures, for which the electron motion is ballistic [12]. The most
pronounced difference between ballistic and disordered-diffusive
rings is the possible existence of short periodic electron trajec-
tories in the former, for which the persistent current essentially
follows the behavior of ideal one-dimensional rings without

potential scattering [13]. Such short trajectories may dominate the
magnetic response, even if the classical dynamics in the ballistic
conductor is chaotic [14–17].

An interesting case arises if the ballistic conductor has a chaotic
classical dynamics, but without short periodic trajectories en-
circling the magnetic flux [18]. Examples of such a situation are,
e.g., a ballistic ring with disc-like scatterers, referred to as a “Lor-
entz gas”, or a collection of chaotic cavities arranged in a ring.
Without short periodic trajectories, differences between the bal-
listic chaotic conductor and its disordered counterpart are much
more subtle, related to the “Ehrenfest time” [19]:

τ
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= ( )kL
1
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where λ is the Lyapunov exponent of the classical dynamics, k is
the wavenumber, and L a characteristic classical length scale. Being
the time required for two classical trajectories a quantum se-
paration k1/ apart to acquire a classical separation L under the
influence of the chaotic classical dynamics, τE characterizes the
threshold between classical-deterministic and quantum-stochastic
dynamics in ballistic structures. Ehrenfest-time-related effects
have been considered for equilibrium properties of chaotic quan-
tum dots [20–23], and for quantum transport in open systems
[19,24–34], but not for persistent currents in a ring geometry.

In the present paper we report a study of the Ehrenfest-
time dependence of the mesoscopic fluctuations of the per-
sistent current in ballistic rings in which the classical electron
motion is chaotic and, after appropriate coarse graining, dif-
fusive. We consider a grand canonical ensemble, and assume
that time-reversal symmetry in the ring is broken by an
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applied magnetic field. In a ballistic ring, mesoscopic fluc-
tuations of the persistent current are induced by variations of
the chemical potential μ; no disorder average is taken. Dif-
ferences between ballistic–chaotic conductors and their dis-
ordered counterparts appear through a dependence on the
Ehrenfest time τE for the ballistic–chaotic case, whereas τE

plays no role in the case of a disordered conductor. As we
show below, no τ − dependenceE is found on the level of the
two-point correlation function ϕ ϕ〈 ( ) ( )〉I I1 2 of the current dis-
tribution; only the connected three-point correlation function

ϕ ϕ ϕ ϕ ϕ ϕ( ) = 〈 ( ) ( ) ( )〉K I I I, ,1 2 3 1 2 3 c, which describes deviations from
the Gaussian distribution, shows a dependence on the Eh-
renfest time in the case of a ballistic conductor. (Here ϕ is the
flux threading the ring, in units of the flux quantum hc e/ ; the
subscript “c” refers to the ‘connected average’,
〈 〉 = 〈 〉 − 〈 〉〈 〉 − 〈 〉〈 〉 − 〈 〉〈 〉 + 〈 〉〈 〉〈 〉abc abc ab c bc a ca b a b c2c .)

In Section 2 we describe the starting point of our theoretical
approach, Gutzwiller's trace formula, and the semiclassical ap-
proximation. A calculation of the two-point correlation function is
presented in Section 3, and the three-point correlator is discussed
in Sections 4 and 5. We conclude in Section 6.

2. Persistent current from Gutzwiller's trace formula

Starting point of our calculation of the persistent current I is the
thermodynamic relation

Ω
ϕ

= − ∂
∂ ( )

I
e
h

,
2

where the thermodynamic potential at temperature T and che-
mical potential μ

∫Ω ε ν ε= − ( + ) ( ) ( )
ε μ−( − )T d eln 1 3

T/

are expressed as an integral of the density of states ν ε( ). Following
previous works on persistent currents in ballistic chaotic con-
ductors [14–17], we use the Gutzwiller trace formula [35] to ex-
press the fluctuating contribution to the density of states as a sum
over periodic orbits α on the energy shell [36]:
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In this expression, the label α represents a periodic orbit with
primitive period αt

0 and period =α αt mt 0, where m is the repetition
number. Further ε( )α is the classical action of the orbit α and αA
the stability amplitude of the orbit:

= [ (( ) − )] ( )α α
−A Mdet 1 5m0 1/2

where αM0 is the stability matrix of the primitive orbit α [36].
We now specialize to a two-dimensional system threaded by a

flux Φ ϕ= hc e/ . Considering energies ε near the chemical potential
μ, the action ε ϕ( )α , can be written as

ε ϕ μ πϕ ε μ( ) = ( ) + ℏ + ( − ) ( )α α α αn t, , 0 2 , 6

where αn is the winding number of the trajectory α. Below we will
write αS as short-hand notation for μ( )α , 0 . Substituting the
Gutzwiller trace formula for the density of states ν, taking the
derivative to ϕ, and performing the integration over ε, one finds
[18]
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Upon separating the current into Fourier components,
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⁎I In n, one then arrives at the result
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3. Mean square current

We now calculate the mean square 〈 〉−I In n for the case that time-
reversal symmetry in the ring is broken by an applied magnetic
field. The leading contribution to 〈 〉−I In n comes from diagonal
contributions:
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The factor two in the numerator comes from the two terms in Eq.
(9), which give equal contributions to 〈 〉−I In n .

In order to perform the trajectory sum in Eq. (10), we use a
method proposed by Argaman et al. [37]. The summation over
classical trajectories is expressed as an integral over the energy
shell Q. Introducing a phase space coordinate μ, and denoting with
μ( )t the phase space coordinate obtained by following the classical
time evolution for a time t, starting at μ, one has

∫∑ μ μ μδ δ δ δ| | ( − ) = ( ( ) − )
( )

μ
α

α α α ( )αt A t t d t ,
11
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where μ( )n t, is the number of times the trajectory starting at the
phase space point μ winds around the flux in the time t. The factor

αt
0 arises, because each trajectory is weighted by a factor αt

0 upon
performing the phase space integration [36]. Upon identifying

μ μ μ μδ δ( ( ) − ) = ( | ) ( )μ( )t p t n, , 12n t n, ,

as the classical probability density that a particle starting at phase
space point μ is found at the same phase space point at time t,
while having passed n times around the flux, we conclude that
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Here we neglected the contribution from orbit repetitions, which
is a standard approximation in this field, since the non-primitive
orbits at a given period are exponentially outnumbered by pri-
mitive orbits with the same period.

For a two-dimensional ring of circumference L with diffusive
electron dynamics, one has
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where π τ= ℏQ 2 H is the volume of the energy shell, τH being the
Heisenberg time, and D the classical diffusion constant. One then
arrives at the result
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where

τ = ( )
L
D 16L

2

is the time required to diffuse around the ring. This is the same
result as what one obtains for a disordered metal ring [8,9]. In the
limit of zero temperature, Eq. (15) simplifies to
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